515 research outputs found

    Effects of inhalation of Freon 113 on laboratory animals

    Get PDF
    Four monkeys, 8 dogs, 40 mice, and 50 rats were exposed continuously to 2000 ppm Freon 113 in a Thomas Dome for 14 days. This exposure produced no mortalities nor adverse symptomology. There were no significant alterations in hematological values, clinical chemistries, electroencephalographic findings, body weights, or organ to body weight ratios. The effect of 2% Freon 113 on nicotinic transmission through the stellate ganglion of the spinal dog was also evaluated. The exposure induced a reduction in nicotinic transmission comparable to 2% halothane

    Feasibility study of an image slicer for future space application

    Get PDF
    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm

    Capillary-scale solid rebounds:Experiments, modelling and simulations

    Get PDF
    A millimetre-size superhydrophobic sphere impacting on the free surface of a quiescent bath can be propelled back into the air by capillary effects and dynamic fluid forces, whilst transferring part of its energy to the fluid. We report the findings of a thorough investigation of this phenomenon, involving different approaches. Over the range from minimum impact velocities required to produce rebounds to impact velocities that cause the sinking of the solid sphere, we focus on the dependence of the coefficient of restitution, contact time and maximum surface deflection on the different physical parameters of the problem. Experiments, simulations and asymptotic analysis reveal trends in the rebound metrics, uncover new phenomena at both ends of the Weber number spectrum, and collapse the data. Direct numerical simulations using a pseudo-solid sphere successfully reproduce experimental data whilst also providing insight into flow quantities that are challenging to determine from experiments. A model based on matching the motion of a perfectly hydrophobic impactor to a linearised fluid free surface is validated against direct numerical simulations and used in the low Weber number regime. The hierarchical and cross-validated models in this study allow us to explore the entirety of our target parameter space within a challenging multi-scale system

    Human Space Flight and Future Major Space Astrophysics Missions: Servicing and Assembly

    Get PDF
    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly
    corecore