19,383 research outputs found

    The Large Area Crop Inventory Experiment (LACIE)

    Get PDF
    A Large Area Crop Inventory Experiment (LACIE) was undertaken to prove out an economically important application of remote sensing from space. The experiment focused upon determination of wheat acreages in the U.S. Great Plains and upon the development and testing of yield models. The results and conclusions are presented

    Angular Momentum Distribution Function of the Laughlin Droplet

    Full text link
    We have evaluated the angular-momentum distribution functions for finite numbers of electrons in Laughlin states. For very small numbers of electrons the angular-momentum state occupation numbers have been evaluated exactly while for larger numbers of electrons they have been obtained from Monte-Carlo estimates of the one-particle density matrix. An exact relationship, valid for any number of electrons, has been derived for the ratio of the occupation numbers of the two outermost orbitals of the Laughlin droplet and is used to test the accuracy of the MC calculations. We compare the occupation numbers near the outer edges of the droplets with predictions based on the chiral Luttinger liquid picture of Laughlin state edges and discuss the surprisingly large oscillations in occupation numbers which occur for angular momenta far from the edge.Comment: 11 pages of RevTeX, 2 figures available on request. IUCM93-00

    The large area crop inventory experiment: A major demonstration of space remote sensing

    Get PDF
    Strategies are presented in agricultural technology to increase the resistance of crops to a wider range of meteorological conditions in order to reduce year-to-year variations in crop production. Uncertainties in agricultral production, together with the consumer demands of an increasing world population, have greatly intensified the need for early and accurate annual global crop production forecasts. These forecasts must predict fluctuation with an accuracy, timeliness and known reliability sufficient to permit necessary social and economic adjustments, with as much advance warning as possible

    On possible interactions between upper and lower atmosphere

    Get PDF
    Geomagnetic data was compared with data on tropospheric and stratospheric circulation characteristics; a statistically significant shrinking was found in areal extent of the stratospheric vortex from the third to the eighth day following a 'geomagnetic storm' The meridionality of the 30 640-m contour line at 10 millibars increases markedly from 5 to 8 days after the storm. During the contraction of the polar vortex edge, the mean height of the vortex central contour decreases only slightly. This indicates that a stratospheric warming event is associated with a steepening of the contour gradient rather than a warming over the entire area of the stratospheric polar vortex. The troposphere reacts to these weak, but significant, stratospheric warming events by a shrinkage of the area of the 500-millibar cold air pool. This shrinkage commences about 3 days after the stratospheric warming. The investigation indicates that the energy input into the stratosphere that is received in conjunction with the geomagnetic disturbance has to come at a propitious time, when the stratospheric-tropospheric circulation system is not already undergoing a major readjustment because of an inherent dynamic instability

    Temperature dependent carrier lifetime studies of Mo in crystalline silicon

    Get PDF
    The capture cross sections of both electronsσn and holes σp were determined for interstitialmolybdenum in crystalline silicon over the temperature range of −110 to 150 °C. Carrier lifetimemeasurements were performed on molybdenum-contaminated silicon using a temperature controlled photoconductance instrument. Injection dependent lifetime spectroscopy was applied at each temperature to calculate σp and σn. This analysis involved a novel approach that independently determined the capture cross sections at each temperature assuming a known defect density and thermal velocity. Since the energy state is in the lower half of the bandgap, the determination of σp is unaffected by the defect energy at all temperatures, and σp is found to decrease with temperature in a fashion consistent with excitonic Auger capture. At temperatures below 0 °C, the determination of σn is also unaffected by the defect energy due to the suppression of thermal emission, and σn decreases with temperature as well. It is shown that a projection of σn to higher temperature suggests the defect has an energy of 0.375 eV above the valance band edge of silicon.D.M. likes to thank the Australian Research Council for fellowship and G.C. likes to thank “CrystalClear Integrated Project” Contract No. SES6-CT_2003-502583 funded by the European Commission

    Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges

    Full text link
    We report on microscopic numerical studies which support the chiral Luttinger liquid theory of the fractional Hall edge proposed by Wen. Our calculations are based in part on newly proposed and accurate many-body trial wavefunctions for the low-energy edge excitations of fractional incompressible states.Comment: 12 pages + 1 figure, Revte

    U.S. River Discharge for 2008 in State of the Climate in 2008

    Get PDF
    The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland

    A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation \ud

    Get PDF
    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edges of the magnetic substances Fe, Co, and Ni for the benefit of magnetic circular dichroism spectroscopy employing circularly polarized synchrotron radiatio
    corecore