506 research outputs found
Atomic masses of intermediate-mass neutron-deficient nuclei with relative uncertainty down to 35-ppb via multireflection time-of-flight mass spectrograph
High-precision mass measurements of Cu, Zn, Ga,
Ge, As, Br, Rb, and Sr were performed
utilizing a multireflection time-of-flight mass spectrograph combined with the
gas-filled recoil ion separator GARIS-II. In the case of Ga, a mass
uncertainty of 2.1 keV, corresponding to a relative precision of , was obtained and the mass value is in excellent agreement
with the 2016 Atomic Mass Evaluation. For Ge and Br, where masses
were previously deduced through indirect measurements, discrepancies with
literature values were found. The feasibility of using this device for mass
measurements of nuclides more neutron-deficient side, which have significant
impact on the -process pathway, is discussed.Comment: 15 pages, 6 figures, 1 tabl
\pi N and \eta p deexcitation channels of the N^* and \Delta baryonic resonances between 1470 and 1680 MeV
Two reactions, pp->ppX and pp->p\pi^+X, are used to study the 1.47<M<1.68 GeV
baryonic mass range. Three different final states are considered in the
invariant masses: N^* or \Delta^+, p\pi^0, and p\eta. The last two channels are
defined by software cuts applied to the missing mass of the first reaction.
Several narrow structures are extracted with widths \sigma(\Gamma) varying
between 3 and 9 MeV. Some structures are observed in one channel but not in
others. Such nonobservation may be due either to the spectrometer momenta
limits or to the physics (e.g. no such disintegration channel is allowed from
the narrow state considered).
We tentatively conclude that the broad Particle Data Group (PDG) baryonic
resonances N(1520)D13, N(1535)S11, Delta(1600)P33, and N(1675)D15 are
collective states built from several narrow and weakly excited resonances, each
having a (much) smaller width than the one reported by PDG.Comment: 29 pages, plus 50 (.png) figures Will be published in a slightly
reduced size in Phys. Rev.
Law, Liberty and the Rule of Law (in a Constitutional Democracy)
In the hunt for a better--and more substantial--awareness of the “law,” The author intends to analyze the different notions related to the “rule of law” and to criticize the conceptions that equate it either to the sum of “law” and “rule” or to the formal assertion that “law rules,” regardless of its relationship to certain principles, including both “negative” and “positive” liberties. Instead, he pretends to scrutinize the principles of the “rule of law,” in general, and in a “constitutional democracy,” in particular, to conclude that the tendency to reduce the “democratic principle” to the “majority rule” (or “majority principle”), i.e. to whatever pleases the majority, as part of the “positive liberty,” is contrary both to the “negative liberty” and to the “rule of law” itself
An adaptive inelastic magnetic mirror for Bose-Einstein condensates
We report the reflection and focussing of a Bose-Einstein condensate by a new
pulsed magnetic mirror. The mirror is adaptive, inelastic, and of extremely
high optical quality. The deviations from specularity are less than 0.5 mrad
rms, making this the best atomic mirror demonstrated to date. We have also used
the mirror to realize the analog of a beam-expander, producing an ultra-cold
collimated fountain of matter wavesComment: 4 pages, 4 figure
Cooperative damping mechanism of the resonance in the nuclear photoabsorption
We propose a resonance damping mechanism to explain the disappearance of the
peaks around the position of the resonances higher than the resonance
in the nuclear photoabsorption. This phenomenon is understood by taking into
account the cooperative effect of the collision broadening of and
, the pion distortion and the interference in the two-pion
photoproduction processes in the nuclear medium.Comment: 11 pages, uses revtex.sty. To appear in Phys. Rev. Let
Multi-level parallel clocking of CCDs for: improving charge transfer efficiency, clearing persistence, clocked anti-blooming, and generating low-noise backgrounds for pumping
A multi-level clocking scheme has been developed to improve the parallel CTE of four-phase CCDs by suppressing the effects of traps located in the transport channel under barrier phases by inverting one of these phases throughout the transfer sequence. In parallel it was apparent that persistence following optical overload in Euclid VIS detectors would lead to undesirable signal released in subsequent rows and frames and that a suitable scheme for flushing this signal would be required. With care, the negatively biased electrodes during the multi-level transfer sequence can be made to pin the entire surface, row-by-row, and annihilate the problematic charges. This process can also be extended for use during integration to significantly reduce the unusable area of the detector, as per the clocked anti-blooming techniques developed many years ago; however, with the four-phase electrodes architecture of modern CCDs, we can take precautionary measures to avoid the problem of charge pumping and clock induced charge within the science frames. Clock induced charge is not all bad! We also propose the use of on-orbit trap-pumping for Euclid VIS to provide calibration input to ground based correction algorithms and as such a uniform, low noise background is require. Clock induced charge can be manipulated to provide a very suitable, low signal and noise background to the imaging array. Here we describe and present results of multi-level parallel clocking schemes for use in four-phase CCDs that could improve performance of high precision astronomy applications such as Euclid VIS
Magnetic dipole moment of the (1232) from the reaction
The reaction in the -resonance
region is investigated as a method to access the magnetic
dipole moment. The calculations are performed within the context of an
effective Lagrangian model containing both the -resonant mechanism and
a background of non-resonant contributions to the
reaction. Results are shown both for existing and forthcoming experiments. In particular, the sensitivity of unpolarized
cross sections and photon asymmetries to the magnetic dipole moment
is displayed for those forthcoming data.Comment: 25 pages, 11 figure
Photofission of heavy nuclei at energies up to 4 GeV
Total photofission cross sections for 238U, 235U, 233U, 237Np, 232Th, and
natPb have been measured simultaneously, using tagged photons in the energy
range Egamma=0.17-3.84 GeV. This was the first experiment performed using the
Photon Tagging Facility in Hall B at Jefferson Lab. Our results show that the
photofission cross section for 238U relative to that for 237Np is about 80%,
implying the presence of important processes that compete with fission. We also
observe that the relative photofission cross sections do not depend strongly on
the incident photon energy over this entire energy range. If we assume that for
237Np the photofission probability is equal to unity, we observe a significant
shadowing effect starting below 1.5 GeV.Comment: 4 pages of RevTex, 6 postscript figures, Submitted to Phys. Rev. Let
First Direct Mass Measurements of Nuclides around Z=100 with a Multireflection Time-of-Flight Mass Spectrograph
The masses of 246Es, 251Fm, and the transfermium nuclei 249−252Md and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N=152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of 249,250Md as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N=152 neutron shell closure for Md and Lr
Automated Detection of Malarial Retinopathy in Digital Fundus Images for Improved Diagnosis in Malawian Children with Clinically Defined Cerebral Malaria
Cerebral malaria (CM), a complication of malaria infection, is the cause of the majority of malaria-associated deaths in African children. The standard clinical case definition for CM misclassifies ~25% of patients, but when malarial retinopathy (MR) is added to the clinical case definition, the specificity improves from 61% to 95%. Ocular fundoscopy requires expensive equipment and technical expertise not often available in malaria endemic settings, so we developed an automated software system to analyze retinal color images for MR lesions: retinal whitening, vessel discoloration, and white-centered hemorrhages. The individual lesion detection algorithms were combined using a partial least square classifier to determine the presence or absence of MR. We used a retrospective retinal image dataset of 86 pediatric patients with clinically defined CM (70 with MR and 16 without) to evaluate the algorithm performance. Our goal was to reduce the false positive rate of CM diagnosis, and so the algorithms were tuned at high specificity. This yielded sensitivity/specificity of 95%/100% for the detection of MR overall, and 65%/94% for retinal whitening, 62%/100% for vessel discoloration, and 73%/96% for hemorrhages. This automated system for detecting MR using retinal color images has the potential to improve the accuracy of CM diagnosis
- …