7,721 research outputs found

    The effects of leaf litter treatments, post-harvest urea and omission of early season fungicide sprays on the overwintering of apple scab on Bramley’s Seedling grown in a maritime environment.

    Get PDF
    peer-reviewedThe theory that orchards with zero or low levels of apple scab post harvest do not need scab protection at the start of the next growing season was evaluated under Irish conditions. In addition, a range of post-harvest orchard sanitation practices (application of urea to rot overwintering leaves, mowing the orchard or total leaf removal in February) were also evaluated. Due to the high summer rainfall in Ireland (compared to all other European apple growing areas) and the severe susceptibility of the apple cultivar Bramley’s Seedling to scab (Venturia inaequalis), neither clean orchards in the autumn nor sanitation practices were sufficient to eliminate the requirement for full fungicide protection programmes at the start of the following growing season. Post harvest applications of urea proved difficult due to late harvesting of pollinator fruit for the juice market and wet weather. Total removal of leaf litter from plots prior to the commencement of growth did not significantly reduce disease incidence. Regardless of orchard cleanliness in autumn, missing the first fungicide application in the spring always reduced yield.This work was funded by the Department of Agriculture and Rural Development, Northern Ireland

    Explicit tensor network representation for the ground states of string-net models

    Get PDF
    The structure of string-net lattice models, relevant as examples of topological phases, leads to a remarkably simple way of expressing their ground states as a tensor network constructed from the basic data of the underlying tensor categories. The construction highlights the importance of the fat lattice to understand these models.Comment: 5 pages, pdf figure

    Ultrasensitivity in phosphorylation-dephosphorylation cycles with little substrate

    Get PDF
    Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of the response. For a substrate with [Formula: see text] phosphosites, we find an upper bound of the Hill number of [Formula: see text], and so even systems with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on the substrate before it can access the substrate's phosphosites, allows the enzymes to sequester the substrate. Such sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often underlay decision-making circuits in eukaryotic cells

    Introduction to Categories and Categorical Logic

    Get PDF
    The aim of these notes is to provide a succinct, accessible introduction to some of the basic ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by no means comprehensive, but should provide a good basis for further study; a guide to further reading is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets, relations and functions. An Appendix contains a summary of what we will need, and it may be useful to review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps, or groups and group homomorphisms - would be helpful.Comment: 96 page

    Preliminary evaluation of infrared and radar imagery, Washington and Oregon coasts

    Get PDF
    Airborne infrared and radar photography of Oregon and Washington coastal region

    Dynamical Expansion of H II Regions from Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds

    Get PDF
    The nature of ultracompact H II regions (UCHRs) remains poorly determined. In particular, they are about an order of magnitude more common than would be expected if they formed around young massive stars and lasted for one dynamical time, around 10^4 yr. We here perform three-dimensional numerical simulations of the expansion of an H II region into self-gravitating, radiatively cooled gas, both with and without supersonic turbulent flows. In the laminar case, we find that H II region expansion in a collapsing core produces nearly spherical shells, even if the ionizing source is off-center in the core. This agrees with analytic models of blast waves in power-law media. In the turbulent case, we find that the H II region does not disrupt the central collapsing region, but rather sweeps up a shell of gas in which further collapse occurs. Although this does not constitute triggering, as the swept-up gas would eventually have collapsed anyway, it does expose the collapsing regions to ionizing radiation. We suggest that these regions of secondary collapse, which will not all themselves form massive stars, may form the bulk of observed UCHRs. As the larger shell will take over 10^5 years to complete its evolution, this could solve the timescale problem. Our suggestion is supported by the ubiquitous observation of more diffuse emission surrounding UCHRs.Comment: accepted to ApJ, 40 pages, 13 b/w figures, changes from v1 include analytic prediction of radio luminosity, better description of code testing, and many minor changes also in response to refere

    The Influence of Metallicity on Star Formation in Protogalaxies

    Full text link
    In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.Comment: 3 pages, 2 figures, First Stars III conference proceeding

    Blasphemy, Risk and the Name of God

    Get PDF
    • …
    corecore