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Abstract

Cellular decision-making is driven by dynamic behaviours, such as the preparations for sunrise enabled by circadian rhythms
and the choice of cell fates enabled by positive feedback. Such behaviours are often built upon ultrasensitive responses
where a linear change in input generates a sigmoidal change in output. Phosphorylation-dephosphorylation cycles are one
means to generate ultrasensitivity. Using bioinformatics, we show that in vivo levels of kinases and phosphatases frequently
exceed the levels of their corresponding substrates in budding yeast. This result is in contrast to the conditions often
required by zero-order ultrasensitivity, perhaps the most well known means for how such cycles become ultrasensitive. We
therefore introduce a mechanism to generate ultrasensitivity when numbers of enzymes are higher than numbers of
substrates. Our model combines distributive and non-distributive actions of the enzymes with two-stage binding and
concerted allosteric transitions of the substrate. We use analytical and numerical methods to calculate the Hill number of
the response. For a substrate with n phosphosites, we find an upper bound of the Hill number of nz1, and so even systems
with a single phosphosite can be ultrasensitive. Two-stage binding, where an enzyme must first bind to a binding site on
the substrate before it can access the substrate’s phosphosites, allows the enzymes to sequester the substrate. Such
sequestration combined with competition for each phosphosite provides an intuitive explanation for the sigmoidal shifts in
levels of phosphorylated substrate. Additionally, we find cases for which the response is not monotonic, but shows instead a
peak at intermediate levels of input. Given its generality, we expect the mechanism described by our model to often
underlay decision-making circuits in eukaryotic cells.
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Introduction

Covalent modifications, such as phosphorylations, play a pivotal

role in regulating the activity of proteins and in the processing of

extracellular signals in eukaryotic cells [1]. These modifications

typically affect the tertiary structure [2] of the targeted proteins,

thus changing their enzymatic activity or their binding affinities for

other proteins. For phosphorylations, there are two types of

modifying enzymes: kinases phosphorylate; phosphatases dephos-

phorylate. Cycles of phosphorylation-dephosphorylation are em-

bedded in regulatory and signalling pathways and can regulate the

flow of information inside the cell. Extracellular and intracellular

cues are sensed and transduced to variations in the concentration

of active enzymes. In the presence of a signal, an increase in

activity of a kinase can, for example, activate a transcription factor

and so turn on a programme of gene expression. The same

programme of expression can be turned off by an increase in the

activity of a phosphatase relative to the activity of the kinase.

Phosphorylation cycles can therefore be treated as a mechanism to

generate a dose-response curve or more generally an input-output

relationship. The input is typically either the concentration of one

of the enzymes (assuming the levels of the other enzyme are

approximately constant on the time scale of the response) or the

ratio of the concentration of one enzyme to the other. The output

is a function of the phosphorylation state of the substrate.

Phosphorylation cycles have been predicted to exhibit ultra-

sensitivity, generating a response to a change in the stimulus that is

more non-linear, or more sigmoidal, than a Michaelis-Menten-like

response [3]. Ultrasensitivity, and the degree of non-linearity it

implies, is important because it is a pre-requisite for biochemical

networks to generate oscillations or bistable behaviour [4].

Sequential cascades of phosphorylation cycles, such as cascades

of MAP kinase, can amplify signals and increase the degree of

ultrasensitivity of the response with each step of the cascade [5].

Single cycles but with substrates with multiple phosphorylation

sites can have steep response curves too, although the degree of

ultrasensitivity can depend on the order in which the sites are

modified and whether the modifying enzyme is processive or

distributive [6,7]. Product-inhibition of the kinase and phospha-

tase, in which their products remain bound to the enzymes [8],

and other forms of sequestration [9,10] also induce ultrasensitive

behaviour.

Perhaps the most famous means, though, is zero-order

ultrasensitivity [3], but this mechanism imposes constraints on

the concentrations of enzymes and their substrates that do not

always appear to hold in vivo [11]. Both enzymes must be saturated
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– the concentration of the substrate should far exceed the enzyme’s

Michaelis-Menten constant – so that the modifying reactions

proceed at a rate that is independent of the concentration of the

substrate. Such saturation often occurs when the concentration of

the substrate is much greater than the concentration of the

enzymes. Examples of zero-order ultrasensitivity are known in vitro

[12,13] and in vivo [14,15], but other ultrasensitive systems have

also been discovered with enzymes that are more abundant than

the substrate [16].

Attempts at reconciling these opposing observations have

attracted some modelling. Mechanisms to explain how an excess

of enzymes over the substrate can still generate an ultrasensitive

output have included product-inhibition [8] and local saturation

[16,17]. These models, however, require assumptions of their own

or ad hoc constraints that affect their generality.

Here we estimate the distribution of enzymes-to-substrate ratios

in the yeast Saccharomyces cerevisiae and so estimate how widespread

are the conditions that invalidate zero-order ultrasensitivity. We

then present a general, mechanistic model for robust ultrasensi-

tivity in single and multi-site phosphorylation-dephosphorylation

cycles in conditions where the enzymes are in excess relative to

their substrate. We explore this novel mechanism, obtaining

analytical calculations of the Hill number (a measure of

ultrasensitivity), identify the origins of ultrasensitivity, and show

that the mechanism can also exhibit non-monotonic responses.

Results

Distribution of saturation levels in phosphorylation
reactions in budding yeast

The zero-order model of ultrasensitivity [3] hinges on the

assumption that the enzymes are saturated and so enzymes to

substrate ratios, l~ET=ST , are often low, where ET and ST are

the concentrations of enzyme and of substrate available in the

system. Enzyme saturation can always occur when that ratio is

sufficiently below one (l%1).

Systematic measurements of Michaelis-Menten constants and

the concentrations of enzymes and their substrates in vivo are still

limited. Experimental evidence suggests that many enzymes

operate away from saturation with ratios of substrate concentra-

tion to Michaelis-Menten constants ranging between 1022 and 1

in physiological conditions [11]. We expanded on these reports

and estimated the ratios of enzymes to substrate in vivo in the yeast

S. cerevisiae by comparing information about phosphorylation

reactions with global measurements of protein expression. We

extracted from BioGRID [18], a curated database of protein-

protein interactions, all interactions that are annotated as

corresponding to either phosphorylations or dephosphorylations

in budding yeast. We thus compiled a list of kinases and

phosphatases and their respective substrates (which may them-

selves be kinases or phosphatases). We then compared these

proteins with the protein expression data of Ghaemmaghami et al.

[19], who constructed an extensive fusion library and used

immunodetection to measure the absolute levels of protein

abundance during log phase growth in rich media.

Taken together, these two sets of data allow us to show that the

enzyme to substrate ratio, l, for a number of phosphorylation

dependent systems in yeast does not appear to be biased (Fig. 1).

We obtain 2850 phosphorylation reactions, comprising 98 unique

kinases and 1136 unique substrates and 43 dephosphorylation

reactions involving 16 unique phosphatases and 32 unique

substrates. The data for phosphatases is scarce and thus not as

informative, and so we focus on kinases. The distribution of ratios

for kinases is unimodal, centred on a 1:1 kinase to substrate ratio,

with a minimum of l&5|10{4 and a maximum of l&140
(Fig. 1). Half of all reactions (49%) operate under lw1 and so are

likely not to satisfy the conditions for zero-order ultrasensitivity. It

is worth noting that randomly sampling any two genes in the

Ghaemmaghami et al. data set and calculating their ratio produces

a distribution that is statistically different from Fig. 1A (Kolmo-

gorov-Smirnov test), but is equally unimodal with a peak at

approximately the same location. We therefore conclude that a

distribution of l that is significantly different from a baseline

distribution has not been selected, and so ultrasensitivity in

phosphorylation cycles ought not to be a phenomenon that

depends on extreme values of concentrations.

This observation prompted us to develop a model that shows

ultrasensitivity in phosphorylation cycles when lw1.

The model
Our model combines concerted allosteric transitions of the state

of the substrate [20] with an implicit form of two-stage binding.

A covalent modification of a substrate molecule often throws a

conformational switch that modifies the molecule’s tertiary

structure [2,21]. Conformational changes are naturally described

by allosteric transitions [20,22–26]. We assume that the substrate

alternates between active and inactive states through thermal

fluctuations and may be biased towards one or another state by its

level of phosphorylation. A related model with conformational

changes controlled by phosphorylation reactions has been used

previously to describe the nuclear translocation of a family of

transcription factors of the immune system [27].

In a two-stage binding mechanism, the enzymes – the kinase

and the phosphatase – bind to their target in two independent but

sequential steps: first, they bind to a docking site on the substrate

molecule; second, and only subsequently, are the enzymes able to

find, bind to and catalyze the modification of a phosphosite,

perhaps through a rearrangement of the substrate’s tertiary

structure [28,29]. We assume that the kinase can only bind to its

docking site on the substrate when the substrate is in its active form

and that the phosphatase can only bind to its docking site when the

substrate is inactive. Both enzymes may either use the same

Authors Summary

Dose-response curves are said to be ultrasensitive when
they are sigmoidal rather than hyperbolic and often
underlay cellular decision-making circuits. Zero-order
ultrasensitivity is a well-known mechanism to generate
sigmoidal curves in phosphorylation cycles, but one of its
assumptions often implies that the substrate is more
abundant than the modifying enzymes. We show that this
assumption is unlikely to always hold in vivo, and we
present a general model that generates ultrasensitivity
when the enzymes are in excess of their substrate. The
model combines conformational allosteric transitions of
the substrate with two-stage binding of the enzymes: the
enzymes bind first to a docking site on the substrate and
then to the substrate’s phosphosites. Ultrasensitivity is
generated because the kinase can bind to the fully
phosphorylated form of the substrate (at its docking site)
and sequester the substrate away from the phosphatase
and, similarly, the phosphatase can bind to the fully
dephosphorylated form of the substrate and sequester the
substrate away from the kinase. The number of kinase-
phosphatase competitions for the substrate determines
the degree of ultrasensitivity. Finally, we show that this
model can generate non-monotonic responses that peak
at intermediate levels of input.

Ultrasensitivity with Little Substrate
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docking site (or partly overlapping docking sites) or different

docking sites, but in either case, the structural conformation of the

active state is such that the phosphatase cannot bind and the

structural conformation of the inactive state is such that the kinase

cannot bind. Two-stage binding implies that the kinase can still

bind a molecule of substrate when the substrate’s phosphosites are

all phosphorylated and, likewise, the phosphatase can still bind the

substrate when the substrate’s phosphosites are all unphosphory-

Figure 1. The ratio of the concentration of kinases to the concentration of their substrates does not appear biased in S. cerevisiae.
(A) The distribution of kinase saturation levels, l (the ratio of kinase concentration to substrate concentration), for the phosphorylation reactions in
the BioGRID database [18] with levels of gene expression during log phase growth in rich media measured by Ghaemmaghami et al. [19]. The data
contains 2850 phosphorylation reactions, comprising 98 unique kinases and 1136 unique substrate targets. (B) Equivalent distribution for
phosphatases. The data contains 43 dephosphorylation reactions, comprising 16 unique phosphatases and 32 unique targets.
doi:10.1371/journal.pcbi.1003175.g001

Figure 2. A model of a phosphorylation-dephosphorylation cycle for an allosteric substrate with multiple phosphorylation sites has
two ‘‘sink’’ states and multiple competitions between the modifying enzymes for the substrate. For each level of phosphorylation, the
free substrate switches conformations allosterically between Sj (inactive, in grey) and S�j (active, in yellow). The rate of allosteric transitions from
active states to inactive states is fL, j and the reverse rate of allosteric transitions from inactive states to active states is bL, j . The kinase (in red) binds to
the active forms of the substrate; the phosphatase (in blue) binds to the inactive forms. The two sinks P: S0 and K : S�n , are shown with shadows. The
rate of association of the kinase to the substrate is fK ; the rate of dissociation of the kinase-substrate complex is bK . Phosphorylation of a phosphosite
resulting in dissociation of the kinase from the substrate has rate kK per phosphosite (distributive catalytic rate represented by the diagonal black
arrows). Phosphorylation of a phosphosite whereby the enzyme remains bound to the substrate has a rate k0K (non-distributive catalytic rate
represented by the straight grey arrows). The rate of association of the phosphatase to the substrate is fP and its rate of dissociation is bP. De-
phosphorylation of a phosphosite resulting in dissociation of the phosphatase from the substrate has a distributive rate kP per phosphosite.
Dephosphorylation of a phosphosite whereby the enzyme remains bound to the substrate has a non-distributive rate k0P.
doi:10.1371/journal.pcbi.1003175.g002

Ultrasensitivity with Little Substrate
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lated because each enzyme can always bind to their docking site

(Fig. 2).

The output or response of a phosphorylation cycle is typically

considered to be a function of the phosphorylation state of the

substrate, but there is no consensus on what this function should

be. With only a single phosphosite, the fraction of phosphorylated

substrate, either free or in complex with one of the two enzymes,

can be used. When there are multiple phosphosites and so multiple

states of partial phosphorylation, there is no longer a unique

choice of output. Some studies have used the fraction of the fully

phosphorylated substrate [6], but it seems likely that substrates

could have some activity when only partially phosphorylated.

Others have taken an average of the phosphorylation states,

weighting by the number of phosphorylated sites for each

individual molecule [17], but proteins are perhaps unlikely to

have such tightly regulated patterns of activity. The level of output

could also depend on which sites are phosphorylated [30] or

depend only on a few essential sites [31], but these choice require

systems that are well characterized experimentally. Our allosteric

mechanism avoids this dilemma: each molecule must be either

active or inactive and the response function is the fraction of

substrate that is active [27].

Our model therefore works as follows (Fig. 2): substrates with an

arbitrary number of phosphosites, n, undergo conformational

transitions between active forms, S�j , and inactive forms, Sj , where

j~0, 1,:::, n is the number of phosphorylated sites on each

molecule. The enzyme-substrate complexes that form are K : S�j
and P: Sj , where K denotes the kinase and P denotes the

phosphatase. Only then can each enzyme modify the phosphor-

ylation state of a single phosphosite. Both enzymes compete for the

free form of the substrate at each stage of phosphorylation, which

allosterically transitions between the two states S�j and Sj . The

competition for a particular molecule of substrate does not

therefore occur at the same time, but still exists because of each

molecule switching back and forth between the forms preferred by

each enzyme (Fig. 2). Further, the enzyme-substrate complex may

either dissociate following each modification – in which case the

enzymatic reactions follow a distributive scheme [32] – or remain

bound after each modification – in which case the catalytic

reactions may follow a processive scheme [33]. By formulating a

model where both distributive and processive schemes can coexist,

we can analyse their contributions to the degree of ultrasensitivity

in the system.

We note that it is not strictly necessary to assume, as we have

here, that distributive phosphorylation and dephosphorylation

reactions trigger the dissociation of the enzyme-substrate complex.

It is mechanistically more likely that there is an intermediate

complex, and it is from this complex that the enzymes dissociate to

subsequently rebind and catalyse the modification of the

remaining phosphosites distributively. This extra layer does not,

however, introduce significant qualitative changes [16], thus in the

interest of simplicity and mathematical tractability we consider

only a single step for the interaction of enzymes with the

modifiable phosphosites, the catalytic modification of the phos-

phosites and the dissociation of the enzyme-substrate complex in

the distributive case (Fig. 2).

The model can be described by a system of ordinary differential

equations, where the phosphatase binds the substrate at rate fP,

dissociates from the substrate at rate bP, and catalyses the

dephosphorylation of the substrate at a distributive rate kP or at a

non-distributive rate k0P. The rates fK , bK , kK and k0K are defined

similarly for the kinase. The dynamics of the enzyme-substrate

complexes, remembering the phosphatase cannot bind the

substrate in the active state and the phosphatase cannot bind the

substrate in the inactive state, obey:

d

dt
P: Sj

� �
~fP P½ � Sj

� �
z jz1ð Þk0P P: Sjz1

� �

{ bPzj kPzk0P
� �� �

P: Sj

� �
,

ð1Þ

d

dt
K : S�j

h i
~fK K½ � S�j

h i
z n{jz1ð Þk0K K : S�j{1

h i

{ bKz n{jð Þ kKzk0K
� �� �

K : S�j

h i
:

ð2Þ

The positive terms in Eqs. (1) and (2) describe the formation of

enzyme-substrate complexes through binding of free enzymes to

their docking sites in the substrate or through non-distributive

enzymatic reactions. The negative terms describe the destruction

of the enzyme-substrate complexes through unbinding of the

enzymes from their docking sites in the substrate or through either

distributive or non-distributive enzymatic reactions. We assume all

phosphosites are identical and equally available to be bound and

modified by the enzymes. Therefore the catalytic rates of

dephosphorylation kP and k0P are multiplied by the number of

phosphorylated phosphosites that are available to the phosphatase

at each state. Likewise, the catalytic rates of phosphorylation kK

and k0K are multiplied by the number of unphosphorylated

phosphosites that are available to the kinase at each state.

The dynamics of the active and inactive free forms of the

substrate – where fL,j is the rate of the conformational transition of

the substrate from active to inactive states, and can depend in

principle on the number j of phosphorylated phosphosites, and

bL,j is the rate for transitions from inactive to active substrate states

– is described by:

d

dt
Sj

� �
~fL,j S�j

h i
zbP P: Sj

� �
z jz1ð ÞkP P: Sjz1

� �

{ bL,jzfP P½ �
� �

Sj

� �
,

ð3Þ

d

dt
S�j

h i
~bL,j Sj

� �
zbK K : S�j

h i
z n{jz1ð ÞkK K: S�j{1

h i

{ fL,jzfK K½ �
� �

S�j

h i
:

ð4Þ

The positive terms in Eqs. (3) and (4) describe the production of

free forms of the substrate either through allosteric transitions from

free forms of the opposite state, through dissociation of the

enzyme-substrate complexes, or through distributive enzymatic

reactions. The negative terms describe the destruction of free

forms of the substrate either through allosteric transitions to free

forms of the opposite state or through binding of free enzymes to

their docking sites in the substrate.

Finally, the dynamics of the free forms of the enzymes obeys

d

dt
P½ �~

Xn

j~0

bP P: Sj

� �
{fP P½ � Sj

� �� �
z
Xn

j~1

j: kP P: Sj

� �
, ð5Þ

d

dt
K½ �~

Xn

j~0

bK K : S�j

h i
{fK K½ � S�j

h i� �
z
Xn{1

j~0

n{jð ÞkK K : S�j

h i
, ð6Þ

Ultrasensitivity with Little Substrate
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where P: Sq

� �
~0 and K : S�q

h i
~0 if q[= 0, 1,:::, nf g. The positive

terms in Eqs. (5) and (6) describe the release of enzymes from the

substrate either through unbinding of the enzymes from their

docking sites in the substrate or through distributive enzymatic

reactions. The negative terms describe the binding of free enzymes

to their docking sites in the substrate.

We normalise all concentrations by the total concentration of

substrate, ST~
Pn

j~0 Sj

� �
z S�j

h i
z P: Sj

� �
z K : S�j

h i
, and im-

pose that ST and the total amount of kinase and phosphatase,

KT and PT , are conserved (enzymatic modifications occur faster

than gene expression and protein degradation). In these units,

KT is therefore equal to l. We solve Eqs. (1–4) at steady state to

obtain:

P: Sj

� �
~

1

bPzj kPzk0P
� � fP P½ � Sj

� �
z jz1ð Þk0P P: Sjz1

� �� �
, ð7Þ

K : S�j

h i
~

1

bKz n{jð Þ kKzk0K
� �

fK K½ � S�j

h i
z n{jz1ð Þk0K K : S�j{1

h i� �
,

ð8Þ

Sj

� �
~

1

bL,jzfP P½ � fL,j S�j

h i
zbP P: Sj

� �
z jz1ð ÞkP P: Sjz1

� �� �
, ð9Þ

S�j

h i
~

1

fL,jzfK K½ �

bL,j Sj

� �
zbK K: S�j

h i
z n{jz1ð ÞkK K : S�j{1

h i� �
:

ð10Þ

The output of the system is the fraction of active substrate

gn~

Pn
j~0 S�j

h i
z K: S�j

h i
Pn

j~0 Sj

� �
z S�j

h i
z P: Sj

� �
z K : S�j

h i , ð11Þ

and 0ƒgnƒ1. The input is the ratio of the concentrations of

free enzymes [3]. We assume that the kinase is maintained at a

constant concentration, but that phosphatase varies in

concentration, either due to activation through signaling or

to a change in cellular location. For example, the phosphatase

Ptc1 is recruited to its substrate at the plasma membrane in

response to increasing concentrations of input (extracellular

pheromone) during mating in yeast [16]. Finally, and because

we are interested in regimes where the concentration of the

enzymes is several fold higher than that of the substrate, we

can treat the concentration of free enzymes to be

approximately the same as their total concentration (the

right hand side of Eqs. (5) and (6) is approximately zero).

We write the approximation as K½ �&KT&l, because all

concentrations are normalised to the concentration of

substrate in our model.

Analytical calculation of the upper bound of the Hill
number

The Hill number is a commonly used measure of ultrasensitivity

and is defined as [34],

hn~{2
d log gn

d log P½ �

� 	
P½ �~ P½ �h

, ð12Þ

where P½ �h is the concentration of phosphatase that generates an

activity that is halfway between the maximum and minimum

activities (the IC50). The basal and minimal levels of activity are,

respectively,

gbas
n ~ lim

P½ �?0
gn~

bKzl fK

bK 1zLnð Þzl fK

, ð13Þ

gmin
n ~ lim

P½ �??
gn~0, ð14Þ

where Ln~fL, n=bL, n is the allosteric equilibrium constant, and

P½ �h obeys gn P½ �h
� �

~ 1
2

gbas
n .

In the symmetric case, we can analytically find the Hill number

and can show that it has a maximum of nz1. We simplify our

calculations (without affecting the general conclusion) by letting

both enzymes operating at identical rates, i.e., fK~fP~f ,

bK~bP~b, kK~kP~kcat, k0K~k0P~k0cat.

We will start by exploring the scenario where all allosteric

rates are identical, bL, j~fL, j~bL, and therefore the allosteric

equilibrium constant Lj~1. The modification of the state of

the substrate by the enzymes does not then bias the

equilibrium of the free forms of substrate towards a state

favoured by one or the other enzyme (for the kinase, the active

state; for the phosphatase, the inactive state). We obtain the

general solution

hn~
b

f
lz

l kcatzk0cat

� �
zbL 2

bzk0catð Þ
f

z
kcat

f

� 	

l kcatzk0catð ÞzbL 2
bzk0

catð Þ
f

z
nz1ð Þkcat

f

� 	
2
664

3
775

{1

: ð15Þ

If we assume that the allosteric reactions S�j <Sj are faster than

all other reactions (i.e., bL??), so that the allosteric

transitions are close to equilibrium, then Eq. (15) becomes

hn~
b

f
lz

2 bzk0cat

� �
zkcat

2 bzk0catð Þz nz1ð Þkcat


 �{1

: ð16Þ

Eq. (16) has an ultrasensitive maximum of hn~
2 k0catz nz1ð Þkcat

2 k0
cat

zkcat

(when b – the dissociation rate of the enzyme-substrate

complexes – is much smaller than the other rates) and a

subsensitive minimum of 0. Purely distributive schemes of

phosphorylation-dephosphorylation (k0cat?0) can therefore

generate a maximum Hill number of nz1.

In this regime of fast and non-biased allosteric kinetics, non-

distributive schemes of phosphorylation-dephosphorylation

(kcat?0) are not ultrasensitive as they can only attain a Hill

number of at most 1 (Eqs. (15) and (16)). Non-distributive

systems may, however, be ultrasensitive if one assumes the

existence of product-inhibition, i.e., if the affinity of the kinase

to its docking sites in the substrate is much enhanced when the

substrate is phosphorylated (and likewise the affinity of the

phosphatase is enhanced when the substrate is dephosphorylat-

ed) [8]. Here we assume interactions of the enzymes with the

Ultrasensitivity with Little Substrate
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docking site are independent of the number and state of

phosphosites.

For a system with n phosphosites, numerical simulations with

k0k~k0P~0 and randomly sampled (non-symmetric) parameters

confirm that the Hill number is distributed between 0 and nz1
(Fig. S1). The general conditions necessary to generate ultra-

sensitivity when the allosteric transitions are unbiased by the state

of the substrate (Lj~1) are therefore: distributive enzymatic

reactions, fast allosteric kinetics and stability of the enzyme-

substrate complex. If the enzyme-substrate complex is unstable (b

is the dominant rate), the system is subsensitive.

The maximum Hill number is given by the number of

competitions between the kinase and the phosphatase for the

substrate (Fig. 2). This result implies that even systems with

substrates with a single phosphosite can generate ultrasensitive

responses with Hill numbers of up to 2. For n~1, for example, the

enzymes compete twice: for the substrate states S�0=S0 and S�1=S1.

Ultrasensitivity is caused by sequestration of the
substrate in the sink states P: S0 and K : S�n

The ultrasensitive input-output curve is dominated by the

concentrations of mainly two states. Fig. 3A depicts an example of

one such ultrasensitive curve, with the concentration of some of

the states at each level of input also shown. The response curve

follows closely the variation in the concentration of the states P: S0

and K : S�n . These states are the complexes formed by the binding

of the phosphatase to the fully unphosphorylated substrate and by

the binding of the kinase to the fully phosphorylated substrate.

Both states exist because of two-stage binding and the binding of

the enzyme to its docking site. Although each enzyme cannot

modify the phosphorylation state of the substrate further, by

remaining bound, the enzyme still sequesters a molecule of

substrate from the competing enzyme.

Ultrasensitivity is therefore generated by sequestration, which is

enabled by two-stage binding. When there is little phosphatase in

Figure 3. Ultrasensitivity occurs because of sequestration of the substrate into one of two sinks (either fully phosphorylated and
bound to kinase or fully dephosphorylated and bound to phosphatase) and is enhanced by the existence of an allosteric bias. (A)
Simulation of the response curve (in black) and the concentration of the states of the system (coloured bars) as a function of the signal, i.e., the ratio
of phosphatase to kinase. Here we have n~4, l~10, bL, 0~fL, 0~bL, 1~fL, 1~105 s21, fK~fP~100 s21 (in units of the inverse total concentration of
the substrate), bK~bP~1 s21, kK~kP~10 s21, k0K~k0P~0. The Hill number is approximately 3.5. (B) Contour plot of the Hill number as a function
of the allosteric bias and the relative dissociation rate obtained from Eq. (17). In this panel n~1, the allosteric bias is given by L~fL, 0=bL, 0~bL, 1=fL, 1

and the relative dissociation rate is b=kcat with f ~kcat and k0cat~0. (C) An allosteric bias allows non-distributive systems to become
ultrasensitive. Contour plots of the Hill number as a function of the allosteric bias and the relative dissociation rate, obtained from solving Eq. (12)
for n~4. Left: purely distributive case (k0cat~0); centre: coexistence of distributivity and non-distributivity (kcat~k0cat); right: non-distributive case
(kcat~0). The relative dissociation rate is defined as in (B) and f ~10 kcat , except for the right panel where the relative dissociation rate is defined as
b
�

k0cat and f ~10 k0cat. In (B) and (C), the solid black line marks the boundary between subsensitivity (above the line) and ultrasensitivity (below the
line).
doi:10.1371/journal.pcbi.1003175.g003
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the system (low signal in Fig. 3A), the kinase operates freely,

phosphorylates the substrate almost completely and then remains

bound to substrate in the state K : S�n (Fig. 2). Most of the substrate

will be sequestered by the kinase because the kinase is more

abundant than the substrate (lw1), and, as determined above, a

condition for ultrasensitivity is a small dissociation rate of the

enzyme-substrate complex. As the phosphatase enters and

accumulates in the system, it has little impact initially because

most of the substrate is shielded from it and the amount of free

kinase is still enough to win the competition for the little free

substrate that is available. As more phosphatase is added, it

eventually starts winning the competition for the substrate, and

once the phosphatase can win one competition then it can win

all nz1, and so sequesters the substrate in its own sink, P: S0

(Fig. 2). The concentration of P: S0 rises sharply as K : S�n
collapses (Fig. 3A). When the ratio of phosphatase to kinase is

high (high input) the situation has been completely reversed and

the substrate is almost completely sequestered by the phospha-

tase and beyond the reach of the kinase. The existence of the

two sink states, P: S0 and K: S�n , therefore makes ultrasensitivity

possible in a phosphorylation cycle with lw1. It is indeed a

necessary condition that the enzymes are in excess relative to

the substrate because only then they can sequester the substrate

entirely.

Modulation of the allosteric bias by the enzymes
enhances ultrasensitivity

While we conclude from Eq. (16) that the enzymes need not

modulate the allosteric conformational transitions of the substrate

for the system to be ultrasensitive, the higher the allosteric bias

induced by each enzyme in that enzyme’s favour the more

ultrasensitive the system becomes. If the free substrate is more

biased towards the active form when it is more phosphorylated,

then this bias favours binding of the kinase because the kinase

binds only to active substrate. Similarly, if the free substrate is

more biased towards the inactive form when it is less phosphor-

ylated, then this bias favours binding of the phosphatase because

the phosphatase binds only to inactive substrate. Such an induced

bias could also be necessary if, for example, there is promiscuity

and so crosstalk between different enzymes and substrates from

various subsystems. Enzymes that modulate the allosteric bias of

their substrate can force the substrate into conformational states

that prevent other enzymes from physically binding. For n~1,

and assuming symmetry, we impose the bias by setting

L0~ L1ð Þ{1
~L, where Lj~fL, j

�
bL, j is the allosteric equilibrium

constant. From Eq. (12) and, taking the limit of fast allosteric rates,

we obtain

h1&
b L{1ð Þz2 l L fð Þ bzkcatzk0cat

� �
b Lz1ð Þ bzkcatzk0catzl fð Þzl f k0cat Lz1ð Þzkcat Lð Þ : ð17Þ

Eq. (17) has the same upper bound of 2, i.e., nz1, but shows

enhanced ultrasensitivity, all other rates being equal (Fig. 3B).

The presence of an allosteric bias can generate ultrasensitivity

even if one of the conditions we presented above for the non-

biased case – the stability of enzyme-substrate complexes – does

not hold. In such cases, while the sink state K: S�n may not be

effective in sequestering the substrate away from the phosphatase,

the allosteric bias increases the probability of the fully phosphor-

ylated substrate being in the active state, which the phosphatase

cannot access, thus preventing linear changes in the overall activity

in response to linear changes in the levels of the phosphatase

(Fig. S3).

Additionally, allosteric biases can drive non-distributive systems,

where kcat?0, into ultrasensitivity. From Eq. (17), a moderate

degree of ultrasensitivity is reached when the dissociation constant

of the enzymes-substrate complex is low (b%f ) or when the rate of

dissociation is much slower than the catalytic rate (b%k0cat) and the

allosteric bias of the substrate is high (L&1). Under these

conditions, the system becomes processive: the enzymes bind to

their docking site and proceed to phosphorylate or dephosphor-

ylate all phosphosites with few dissociation events. Eventual

dissociation of the kinase is therefore most likely to occur only

when the substrate is fully phosphorylated, and eventual dissoci-

ation of the phosphatase is most likely to occur only when the

substrate is fully dephosphorylated. The Hill number can

approach an upper limit of 2, which is independent of the number

of phosphosites. As discussed before, two-stage binding means the

enzymes can still bind to the docking site even if no phosphosites

are available for modification; effectively, the enzymes therefore

compete twice for the free forms of the substrate.

Higher Hill numbers occur when the non-distributive catalytic

rate is much slower than both the binding rate of the enzymes to

their docking site and the dissociation rate (k0cat%f and k0cat%b)

and the allosteric bias is high (L&1). Under these conditions, the

enzymes are more likely to unbind from their docking site and

dissociate from the substrate following each enzymatic reaction

than to modify the next phosphosite. Consequently, both enzymes

may compete for the free forms of the substrate at each state of

phosphorylation, and the upper bound of the Hill number is

therefore nz1. These conditions make the system quasi-distrib-

utive, but the degree of ultrasensitivity is substantially constrained

when compared to an equivalent system that is purely distributive

(Fig. 3C and Figs. S4–S6).

Non-monotonic response curves
When, perhaps counter-intuitively, the fully phosphorylated

state induces a strong conformational bias towards the inactive

state, and thus hinders the binding of kinase, the system can

Figure 4. Phosphorylation-dephosphorylation cycles can gen-
erate non-monotonic input-output relationships. Here the
allostery of the substrate inhibits further modifying reactions by
disfavouring binding of the kinase when the substrate is phosphory-
lated and disfavouring binding of the phosphatase when the substrate
is dephosphorylated. Simulation of the response curve (in black) and
the concentration of the states of the system (coloured bars) as a
function of the signal, i.e., the ratio of phosphatase to kinase, for a
system where n~1, l~10, bL, 0~fL, 0~fL, 1~1000 s21, bL, 1~0:01 s21,
fK~fP~100 s21 (in units of the inverse total concentration of the
substrate), bK~bP~1 s21, kK~kP~10 s21, k0K~k0P~0.
doi:10.1371/journal.pcbi.1003175.g004
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generate a non-monotonic response with a peak of activity at

intermediate levels of input (Fig. 4). If only kinase is present in the

system (low input), the activity is low because there is a strong bias

towards the inactive form of the substrate, which is inaccessible to

the kinase (Eq. (13) with fL, n&bL, n). Most of the substrate is in the

Sn state and the activity is, accordingly, low (Fig. 4). Rather than

impeding phosphorylation of the substrate, the addition of

phosphatase now enhances it by shifting substrate into states of

phosphorylation that are more accessible to the kinase. As a

consequence, the concentration of the sink state K: S�n eventually

rises and so does the activity, peaking at an intermediate level of

phosphatase. As more phosphatase is added, then the expected

behaviour occurs: the phosphatase starts winning the competition,

the concentration of the sink state P: S0 rises, and the activity

decreases. The example depicted in Fig. 4, simplified with

symmetric rates for the kinase and the phosphatase and a single

phosphosite, represents this type of phosphorylation cycle. The

system only responds for a certain range of signal and not at both

lower and higher concentrations. A similar type of non-monotonic

behaviour can also occur in alternative models of phosphorylation

cycles, where the kinase and the phosphatase bind to each other

[35].

To estimate the size of the parameter space where the non-

monotonic behaviour occurs (with k0K~k0P~0), we randomly

sampled parameters from a uniform distribution in log-space

(therefore assuming equally probable magnitudes). For a system

with n~1, we calculated whether each sampled set of

parameters generates a non-monotonic response or not, and

we calculated the prominence of the peak for non-monotonic

systems, i.e. the difference between the maximal activity of the

peak and gbas
n (Eq. (13)). For degrees of saturation between

l~10 and l~1,000, approximately 40% of the parameter

space generates non-monotonic behaviour, and its prominence

is uniformly distributed between 0 (no peak) and 1 (when the

basal level of activity is 0 and the maximal activity, i.e., the

height of the peak, is 1).

Ultrasensitivity does not require allostery
Our predictions of ultrasensitivity do not depend on allostery.

We considered an alternative variation of the model (Fig. 5A),

similar to other models that have been proposed [16,17]. Because

distributivity is essential to generate ultrasensitivity, we ignore the

non-distributive enzymatic reactions (k0K~k0P~0, Fig. 5A). The

substrate only has one conformational form, to which both the

kinase and the phosphatase can bind. They bind to a docking site

before modifying the phosphorylation state, but with a constraint:

either they bind to the same docking site, and thus only one type of

enzyme can be bound at a time, or they bind to different docking

sites, but a bound enzyme blocks the access of the opposing

enzyme to its docking site via steric hindrance (Fig. 5A). Following

the same method as above, we obtain for the model of Fig. 5A

(Text S1):

P: Sj

� �
~

1

KP
M, j

P½ � Sj

� �
, ð18Þ

K: Sj

� �
~

1

KK
M, j

K½ � Sj

� �
, ð19Þ

Sj

� �
~ S0½ �

K½ �
P½ �

� 	j

P
j

x~1

KP
M, x n{jzxð ÞkK

KK
M, x{1x: kP

, ð20Þ

where KP
M, j~

bPzj: kP
fP

and KK
M, j~

bK z n{jð Þ kK
fK

take the form of

the classical Michaelis-Menten constants. The output function is

Figure 5. Allostery is not required for ultrasensitivity and models with steric hindrance where the binding of one enzyme inhibits
binding of the other can be highly ultrasensitive. (A) A model with steric hindrance. The kinase (red) and the phosphatase (blue) bind either to
the same docking site or to different docking sites and block the access of the other enzyme to its docking site. The two sinks, P: S0 and K: S�n , are
shown with shadows. The non-distributive catalytic rates (dashed grey arrows) were not allowed in this model. (B) Simulation of the response curve
(in black) and the concentration of the states of the system (coloured bars) as a function of the signal, i.e., the ratio of phosphatase to kinase for a
system, with n~1, l~5, fK~0:01 s21, fP~500 s21 (in units of the inverse total concentration of the substrate), bK~bP~1 s21, kK~1 s21,
kP~0:001 s21. The Hill number is approximately 10.
doi:10.1371/journal.pcbi.1003175.g005
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either the fraction of fully phosphorylated states

gsh
n ~

Pn
j~0 j Sj

� �
z P: Sj

� �
z K : Sj

� �� �
Pn

j~0 n Sj

� �
z P: Sj

� �
z K : Sj

� �� � , ð21Þ

or a weighted average of the phosphorylated states if nw1. It can

be seen that Eqs. (7–10) and Eqs. (18–20) are equivalent in the

limit where all allosteric rates are faster than the remaining rates

and the allosteric reactions are in quasi-equilibrium (in which case,

Sj

� �
in Eq. (20) equals the sum of both forms of the substrate in the

allosteric model). The Hill number thus depends similarly on n. In

the symmetric case (fK~fP~f , bK~bP~b and kK~kP~kcat),

which is analytically solvable, it can be shown the model with steric

hindrance also has a Hill number with an upper limit of nz1.

This limit is obtained under the same condition – low dissociation

between the enzyme and the substrate in complex – and is also

explained by the sequestration of the substrate in two sink states.

This alternative model without allostery shows that it is possible

to achieve Hill numbers of magnitude comparable to those

predicted by zero-order ultrasensitivity even though lw1. When

the enzymes are not symmetric and have different affinities to the

substrate and different catalytic rates, then the behaviour of the

response can be different between the two models. Parameter

sampling and numerical simulations of the model with the

allosteric transitions confirms that the upper bound of the Hill

number is nz1 (Fig. S1). The model without allostery but with

steric hindrance can, however, generate Hill numbers higher than

nz1 (Fig. S2). Fig. 5B depicts an example of a system with 1

phosphosite (n~1) and a Hill number higher than 10, but the

ultrasensitivity is dependent on the particular choice of output

function. Here we use Eq. (21), and consider a system where the

kinase has low affinity to the substrate and the phosphatase has

high affinity, but a much slower catalytic rate, kP. When the input

is low, the substrate is primarily in the state S1. The kinase cannot

sequester the substrate in its sink state, but the concentration of

phosphatase is too low to bind to the substrate in significant

numbers. As the concentration of the phosphatase increases, the

complex P: S1 is formed, but the modifying rate kP is slow, so the

substrate remains in a phosphorylated form. Finally, the addition

of phosphatase reaches a critical level where enough unpho-

sphorylated substrate is produced and accumulated in the sink

state P: S0 (Fig. 5B). This sharpening of the threshold occurs

because the phosphorylation cycle is ‘‘jammed’’ in the P: S1

complex. It is only possible if a molecule of substrate is considered

active once phosphorylated, rather than in a particular confor-

mational state.

On the other hand, the alternative model of Fig. 5A generates

only monotonic response curves: in the absence of signal, the

response is maximal (gsh
n ~1); introducing phosphatase in the

system reduces the response monotonically.

Discussion

Here we have shown that a phosphorylation-dephosphorylation

cycle with neither the kinase nor the phosphatase saturated can

exhibit ultrasensitivity. Both the concentration of the kinase and

the phosphatase must exceed that of the substrate and both must

first bind to a docking site on the substrate before accessing its

phosphosites. We consider either the substrate to be allosteric and

in one conformation to bind only the kinase and in the other

conformation to bind only the phosphatase or that the binding of

one enzyme prevents the binding of another. Ultrasensitivity is

mostly generated by sequestration of the substrate either when

fully phosphorylated and the substrate is bound by the kinase at its

docking site or when fully dephosphorylated and the substrate is

bound by the phosphatase at its own docking site. The maximal

degree of ultrasensitivity is determined by the number of

competitions between the kinase and phosphatase for the

substrate. If both enzymes bind simultaneously, i.e., if they have

distinct docking sites that remain available when the opposing

enzyme is bound, the degree of ultrasensitivity can be substantially

reduced and depends on the affinity of each enzyme to forms of

the substrate that are either bound by the opposing enzyme or are

in conformational states that do not favour binding of that

enzyme. In this scenario, each enzyme may no longer be able to

sequester the substrate in an inaccessible sink state.

Under the assumptions of our model, namely the rates of

binding and unbinding of the enzymes to the docking site in the

substrate are independent of the substrate’s phosphorylation state,

we find maximal ultrasensitivity occurs when the system has a

purely distributive scheme, i.e., when the enzymes unbind from

the substrate upon catalysing the modification of the phosphor-

ylation state. If, on the other hand, the enzymes do not release the

substrate immediately following phosphorylation and dephosphor-

ylation events, then the degree of ultrasensitivity is reduced. Our

results on the relative effects of processive and distributive catalytic

rates are analogous to those of Dushek et al., who studied

ultrasensitivity in phosphorylation-dephosphorylation cycles of

membrane-anchored proteins and modelled the diffusion of

enzymes towards their substrate explicitly [17]. The authors

observed that the system is only ultrasensitive if the enzymatic

reactions are diffusion-limited and there exists a refractory period

that maintains the enzymes inactive immediately after the catalytic

reactions. Those conditions effectively impose a distributive

mechanism. Indeed, processive schemes are generally believed to

make poor switches [33].

Distributive mechanisms of phosphorylation have been identi-

fied in, for example, the phosphorylation of the p42 MAP kinase in

Xenopus oocytes, and are essential there to generate switch-like

responses [36]. In endogenous conditions it is possible that non-

distributive and distributive mechanisms coexist within the same

phosphorylation-dephosphorylation cycle. Some sites may be

phosphorylated or dephosphorylated processively and others

distributively, as has been suggested for the phosphorylation of

the Pho4 transcription factor in budding yeast [37]. For this type

of systems, the Hill number will fall short of its theoretical

maximum of nz1, but ultrasensitivity remains possible (Eqs. (15)

and (16)).

We expect our model to apply widely. As we have shown,

approximately 50% of kinases are expected to have concentrations

higher than those of their substrates in budding yeast. Not all

copies of the same kinase are however necessarily co-localized with

all of their substrates, and so the effective kinase to substrate ratio

may be smaller. Having concentrations of the modifying enzymes

higher than the substrate could help avoid the slow responses

expected when enzymes are saturated [38], as required for zero-

order ultrasensitivity. Further, the majority of kinases phosphor-

ylate their substrates multiple times [33] and substrates typically

have docking sites for kinases and phosphatases [28,29,39]. An

example is the pheromone response in budding yeast, where a

kinase Fus3 and a phosphatase Ptc1 compete for a substrate Ste5,

which has four phosphosites and docking sites for both Fus3 and

Ptc1 [16]. As the concentration of extracellular pheromone

increases, Ptc1 is recruited to the plasma membrane where it

can interact with Ste5 and so its local concentration increases with

respect to the kinase Fus3 [16]. As predicted, the degree of

ultrasensitivity of the response decreases as the number of
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phosphosites on Ste5 decreases [16]. Moreover, it has recently

been shown the scaffold Ste5 undergoes allosteric transitions, and

the kinase Fus3 can only bind one of the conformational states

[40,41].

The ultrasensitivity in our model is generated fundamentally by

competitions between the kinase and the phosphatase with the

winner sequestering the substrate. Sequestration has been

proposed as mechanism for generating ultrasensitivity [8–10]

and even bistability [42] in phosphorylation cycles and in other

systems [43]. Salazar and Höfer proposed a mechanism where

enzymes are directly inhibited by their products [8]. In our model,

sequestration occurs indirectly because of the existence of docking

sites for the enzymes on the substrate and because binding to these

docking sites occurs with an affinity independent of the state of

phosphorylation of the substrate. This difference is not minor:

product-inhibition requires a constraint on the dissociation

constants of the substrate-enzyme complexes – the kinase must

have low affinity for the phosphorylated state and the phosphatase

low affinity for the unphosphorylated state [8]. In our model,

ultrasensitivity is independent of whether the enzymes prefer fully

modified states of substrate over non-modified states, and Hill

numbers higher than 1 can be reached even when the affinities are

the same for all states of phosphorylation (Eq. (16)). Liu et al. [10]

have also proposed a mechanism with regulated degrees of

sequestration that is capable of generating ultrasensitivity. In their

model, the substrate is sequestered by another protein (a scaffold

for example) or translocates to a compartment, depending on the

substrate’s phosphorylation state. It follows that if, for example, the

fully phosphorylated state is sequestered and the phosphatase

cannot access it, the system can become ultrasensitive with an

upper bound for the Hill number that is equal to the number n of

phosphosites. Liu et al. do not model the enzyme-substrate

complexes explicitly, but by modelling the formation of those

complexes with a two-stage binding process, we have shown that

the enzymes themselves can be the agents of sequestration (if each

binds to a different allosteric form or if the binding of one enzyme

sterically inhibits the binding of the competing enzyme).

Additionally, the fully phosphorylated forms of the substrate need

not be structurally different from the partially phosphorylated

forms, and our model generates ultrasensitivity with an upper

bound of nz1. Thus even systems with a single phosphosite can

become ultrasensitive.

It is commonly assumed that a simple phosphorylation-

dephosphorylation cycle cannot generate ultrasensitivity if the

enzymes are not saturated [44]. Our model shows that this

assumption is not true if biochemistry is modelled more closely to

include docking sites for the enzymes on the substrate. Given that

there is little evidence for selection on the ratio of the in vivo

concentration of kinases to their substrates (as we have shown

here), we expect that our mechanism may be common.

Phosphorylation-dephosphorylation cycles require energy to op-

erate, but our results emphasize again that ‘‘futile’’ cycles need not

be expending energy needlessly but use that energy to generate

ultrasensitivity, thus laying the foundation for sophisticated cellular

responses such as irreversible switching and oscillations [4].

Methods

Estimation of the distributions of enzymes to substrate
ratios

The file BIOGRID-ORGANISM-Saccharomyces_cerevisiae-3.1.87.

tab2, which lists annotated protein-protein interactions in yeast,

is available from BioGRID (http://thebiogrid.org/) [18]. We

wrote a script to extract the phosphorylation and dephosphory-

lation interactions and combined the resulting list with the protein

expression data of Ghaemmaghammi et al. [19].

Analytical calculations
The detailed calculations of the steady-state concentrations of

all states and of the Hill numbers are presented in the Text S1.

Numerical simulations
The system of ordinary differential equations is simulated using

the Facile software [45] and MATLAB (The Mathworks,

Massachusetts). When multiple simulations to verify the analytical

results are referred to in the text, all rates were sampled from log-

uniform distributions across six orders of magnitude. The allosteric

rates fL, j and bL, j were bound between 1 s21 and 106 s21, while

all other rates were bound between 1023 s21 and 103 s21 (where

fK and fP are in units of the inverse total concentration of the

substrate).

Supporting Information

Text S1 Suporting information. Section 1 provides a

derivation of the equations for the Hill number presented in the

main text. Section 2 provides a derivation of a general and

compact solution for the state variables at steady state when

k0K~k0P~0 (purely distributive case). Section 3 compares a model

of phosphorylation-dephosphorylation cycles, which expends

energy and hence has irreversible catalytic reactions, with a

Monod-Wyman-Changeux model, which does not expend energy

and has reversible catalytic reactions. We show that the Monod-

Wyman-Changeux model is not ultrasensitive in response to

changes in the concentrations of the enzymes.

(PDF)

Figure S1 Distributions of the Hill number for a non-
symmetric version of the allosteric model of Figure 2.
The Hill numbers were determined by numerical differentiation

from 1,000 simulated dose-response curves. For each simulation,

the kinetic rates were sampled from log-uniform distributions. The

rates bK , bP, kK and kp vary between 1023 s21 and 103 s21; the

rates fK and fP vary between 1023 s21 and 103 s21 (in units of the

inverse total concentration of the substrate); the rates fL and bL

vary between 100 s21 and 105 s21; k0K~k0P~0 s21. All species are

normalised to the total concentration of the substrate, and n~1.

Top: l~5. Bottom: l~100.

(TIF)

Figure S2 Distributions of the Hill number for a non-
symmetric version of the steric hindrance model of
Figure 5A. The Hill numbers were determined by numerical

differentiation from 1,000 simulated dose-response curves. The

purple bars represent Hill numbers higher than 2. For each

simulation, the kinetic rates were sampled from log-uniform

distributions. The rates bK , bP, kK and kp vary between 1023 s21

and 103 s21; the rates fK and fP vary between 1023 s21 and

103 s21 (in units of the inverse total concentration of the substrate).

All species are normalised to the total concentration of the

substrate, and n~1. Top: l~5. Bottom: l~100.

(TIF)

Figure S3 The allosteric bias enhances ultrasensitivity
and increases the number of sink states. Simulation of the

response curve (in black) and the concentration of the states of the

system (coloured bars) as a function of the signal, i.e., the ratio of

phosphatase to kinase. Here we have n~1, l~10,

bL, 0~fL, 1~104 s21, bL, 1~fL, 0~106 s21, fK~fP~30 s21 (in

Ultrasensitivity with Little Substrate
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units of the inverse total concentration of the substrate),

bK~bP~100 s21, kK~kP~1 s21, k0K~k0P~0. The allosteric

bias L~100 creates an extra sink state, S�j , and turns the system

ultrasensitive, even while the dissociation rates bK and bP are very

fast. The Hill number is approximately 1.7.

(TIF)

Figure S4 Contour plots of the Hill number as a
function of the allosteric bias and the relative dissoci-
ation rate for f ~kcat. Rows: systems with, from top to bottom,

n~1, n~2 and n~4 phosphosites. Left column: purely

distributive case (k0cat~0); centre column: coexistence of distrib-

utivity and non-distributivity (kcat~k0cat); right column: non-

distributive case (kcat~0). The relative dissociation rate is the ratio

of the dissociation rate to the enzymatic rate (b=kcat in the left and

centre columns; b
�

k0cat in the right column. The solid black line

marks the boundary between subsensitivity (above the line) and

ultrasensitivity (below the line).

(TIF)

Figure S5 Contour plots of the Hill number as a
function of the allosteric bias and the relative dissoci-
ation rate for f ~10kcat. Rows: systems with, from top to

bottom, n~1, n~2 and n~4 phosphosites. Left column: purely

distributive case (k0cat~0); centre column: coexistence of distrib-

utivity and non-distributivity (kcat~k0cat); right column: non-

distributive case (kcat~0). The relative dissociation rate is the ratio

of the dissociation rate to the enzymatic rate (b=kcat in the left and

centre columns; b
�

k0cat in the right column. The solid black line

marks the boundary between subsensitivity (above the line) and

ultrasensitivity (below the line). The bottom row corresponds to

Fig. 3C in the main text.

(TIF)

Figure S6 Contour plots of the Hill number as a
function of the allosteric bias and the relative dissoci-
ation rate for f ~100kcat. Rows: systems with, from top to

bottom, n~1, n~2 and n~4 phosphosites. Left column: purely

distributive case (k0cat~0); centre column: coexistence of distrib-

utivity and non-distributivity (kcat~k0cat); right column: non-

distributive case (kcat~0). The relative dissociation rate is the ratio

of the dissociation rate to the enzymatic rate (b=kcat in the left and

centre columns; b
�

k0cat in the right column. The solid black line

marks the boundary between subsensitivity (above the line) and

ultrasensitivity (below the line).

(TIF)
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