58 research outputs found
Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides
alpha-1,4-linked oligogalacturonides (OGs) are pectic fragments of plant cell walls that are able to induce defence and developmental responses. To understand plant responses to OGs at the transcriptional level, changes in gene expression were examined using oligonucleotide-based microarrays that cover almost the entire Arabidopsis transcriptome. In suspension-cultured Arabidopsis thaliana (L.) Columbia hypocotyl cells, approximately 4% of the total transcriptome exhibited significant change in abundance in response to treatment with OGs for 2 h. Steady-state changes in the abundance of transcripts encoding stress- and disease-related proteins, signalling components, and transcription factors were particularly noteworthy. As in other plant cell types, OGs elicit a rapid, but transient, elevation in cytosolic free Ca(2+). The Ca(2+) transient can be abolished by the protein kinase inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) and by the Ca(2+) channel inhibitor La(3+), thereby facilitating a distinction between Ca(2+)-dependent and -independent transcriptional responses. Among the 244 transcripts that were up-regulated by OGs, the response of 93 (38%) was selectively sensitive to abolition of the Ca(2+) transient. These OG-up-regulated, Ca(2+)-dependent transcripts included two noteworthy classes, the first comprising genes involved in cell wall modification following pathogen attack, and the second consisting of genes involved in the biosynthesis of jasmonate and C6 volatile compounds. These results support the notion of an important role for cytosolic Ca(2+) signalling in jasmonate biosynthesis following OG perception. Promoter analysis of OG-induced, inhibitor-sensitive and -insensitive genes identified several putative cis-elements that might be involved specifically in Ca(2+)-dependent transcriptional regulation
CGMP signalling in plants:From enigma to main stream
All living organisms communicate with their environment, and part of this dialogue is mediated by secondary messengers such as cyclic guanosine mono phosphate (cGMP). In plants, most of the specific components that allow production and breakdown of cGMP have now been identified apart from cGMP dependent phosphodiesterases, enzymes responsible for cGMP catabolism. Irrespectively, the role of cGMP in plant signal transductions is now firmly established with involvement of this nucleotide in development, stress response, ion homeostasis and hormone function. Within these areas, several consistent themes where cGMP may be particularly relevant are slowly emerging: these include regulation of cation fluxes, for example via cyclic nucleotide gated channels and in stomatal functioning. Many details of signalling pathways that incorporate cGMP remain to be unveiled. These include downstream targets other than a small number of ion channels, in particular cGMP dependent kinases. Improved genomics tools may help in this respect, especially since many proteins involved in cGMP signalling appear to have multiple and often overlapping functional domains which hampers identification on the basis of simple homology searches. Another open question regards the topographical distribution of cGMP signals are they cell limited? Does long distance cGMP signalling occur and if so, by what mechanisms? The advent of non-disruptive fluorescent reporters with high spatial and temporal resolution will provide a tool to accelerate progress in all these areas. Automation can facilitate large scale screens of mutants or the action of effectors that impact on cGMP signalling.
</jats:p
The Effect of Silicon on Osmotic and Drought Stress Tolerance in Wheat Landraces
Drought stress reduces annual global wheat yields by 20%. Silicon (Si) fertilisation has been proposed to improve plant drought stress tolerance. However, it is currently unknown if and how Si affects different wheat landraces, especially with respect to their innate Si accumulation properties. In this study, significant and consistent differences in Si accumulation between landraces were identified, allowing for the classification of high Si accumulators and low Si accumulators. Landraces from the two accumulation groups were then used to investigate the effect of Si during osmotic and drought stress. Si was found to improve growth marginally in high Si accumulators during osmotic stress. However, no significant effect of Si on growth during drought stress was found. It was further found that osmotic stress decreased Si accumulation for all landraces whereas drought increased it. Overall, these results suggest that the beneficial effect of Si commonly reported in similar studies is not universal and that the application of Si fertiliser as a solution to agricultural drought stress requires detailed understanding of genotype-specific responses to Si
The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins
The cyclic nucleotide cGMP has been shown to play important roles in plant development and responses to abiotic and biotic stress. Yet much controversy remains regarding the exact role of this second messenger. Progress in unravelling cGMP function in plants was hampered by laborious and time-consuming methodology to measure changes in cellular [cGMP] but the development of fluorescence-based reporters has removed this disadvantage. This study used the FlincG cGMP reporter to investigate potential interactions between phytohormone and cGMP signalling and found a rapid and significant effect of the hormones abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA) on cytoplasmic cGMP levels. In contrast, brassinosteroids and cytokinin did not evoke a cGMP signal. The effects of ABA, IAA, and JA were apparent at external concentrations in the nanomolar range with EC50 values of around 1000, 300, and 0.03 nmoles for ABA, IAA, and JA respectively. To examine potential mechanisms for how hormone-induced cGMP signals are propagated, the role of protein phosphorylation was tested. A phosphoproteomics analysis on Arabidopsis thaliana root microsomal proteins in the absence and presence of membrane-permeable cGMP showed 15 proteins that rapidly (within minutes) changed in phosphorylation status. Out of these, nine were previously shown to also alter phosphorylation status in response to plant hormones, pointing to protein phosphorylation as a target for hormone-induced cGMP signalling
- …