1,221 research outputs found

    African vegetable diversity in the limelight: project activities by ProNIVA.

    Get PDF
    Poster presented at Botanical Congress. Hamburg (Germany), 3-7 Sep 200

    Вплив природних та штучних радіонуклідів на стан здоров'я людини (огляд)

    Get PDF
    Здійснено огляд основних етапів досліджень з впливу природних та штучних радіонуклідів на стан здоров'я людини. Розглянуто методи профілактики захворювань спровокованих радіоактивним випромінюванням. На основі узагальнення наукової літератури про вплив радіонуклідів на людину запропоновано можливі шляхи розширення лікувальних процедур з використанням водних розчинів, які містять іони калію і мають радіоактивність в діапазоні 20-400 Бк/л, що спричинено радіонуклідом 40К і залежить від концентрації іонів калію

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Large Diffeomorphisms in (2+1)-Quantum Gravity on the Torus

    Full text link
    The issue of how to deal with the modular transformations -- large diffeomorphisms -- in (2+1)-quantum gravity on the torus is discussed. I study the Chern-Simons/connection representation and show that the behavior of the modular transformations on the reduced configuration space is so bad that it is possible to rule out all finite dimensional unitary representations of the modular group on the Hilbert space of L2L^2-functions on the reduced configuration space. Furthermore, by assuming piecewise continuity for a dense subset of the vectors in any Hilbert space based on the space of complex valued functions on the reduced configuration space, it is shown that finite dimensional representations are excluded no matter what inner-product we define in this vector space. A brief discussion of the loop- and ADM-representations is also included.Comment: The proof for the nonexistence of the one- and two-dimensional representations of PSL(2,Z) in the relevant Hilbert space, has been extended to cover all finite dimensional unitary representations. The notation is slightly improved and a few references are added

    The Modular Group, Operator Ordering, and Time in (2+1)-Dimensional Gravity

    Get PDF
    A choice of time-slicing in classical general relativity permits the construction of time-dependent wave functions in the ``frozen time'' Chern-Simons formulation of (2+1)(2+1)-dimensional quantum gravity. Because of operator ordering ambiguities, however, these wave functions are not unique. It is shown that when space has the topology of a torus, suitable operator orderings give rise to wave functions that transform under the modular group as automorphic functions of arbitrary weights, with dynamics determined by the corresponding Maass Laplacians on moduli space.Comment: 8 pages, LaTe

    Evolution of associative learning in chemical networks

    Get PDF
    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ’memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells

    Avaliação preliminar da acidificação radicular de tomateiro como método in vivo de avaliação de atividade hormonal de bioestimulantes.

    Get PDF
    No presente trabalho foi verificada a ativação desta enzima in vivo mediante monitoramento da acidificação radicular tanto por meio de reagente púrpura de bromocresol (cuja mudança de cor de púrpura para amarelo denota aumento da concentração de H+) e por eletrodo de pH na presença ou não de ácido-3-indol acético em plântulas de tomateiro.Resumo 4
    corecore