140 research outputs found

    Efficient Prediction of Array Element Patterns Using Physics-Based Expansions and a Single Far-Field Measurement

    Get PDF
    A method is proposed to predict the antenna array beam through employing a relatively small set of physics-based basis functions-called characteristic basis function patterns (CBFPs)-for modeling the embedded element patterns. The primary CBFP can be measured or extracted from numerical simulations, while additional (secondary) CBFPs are derived from the primary one. Furthermore, each numerically generated CBFP, which is typically simulated/measured for discrete directions only, can in turn be approximated by analytical basis functions with fixed expansion coefficients to evaluate the resulting array pattern at any angle through interpolation. This hierarchical basis reduces the number of unknown expansion coefficients significantly. Accordingly, the CBFP expansion coefficients can be determined through a single far-field measurement of only a few reference sources in the field of view. This is particularly important for multibeam array applications where only a limited number of reference sources are available for predicting the beam shape. Furthermore, this instantaneous beam calibration is fast, i.e., potentially capable to speed up the array calibration by one or two orders of magnitude, which is particularly important if the antenna radiation characteristics are subject to drifts

    Sequential star formation in IRAS 06084-0611 (GGD 12-15): From intermediate-mass to high-mass stars

    Get PDF
    Context. The formation and early evolution of high- and intermediate-mass stars towards the main sequence involves the interplay of stars in a clustered and highly complex environment. To obtain a full census of this interaction, the Formation and Early evolution of Massive Stars (FEMS) collaboration studies a well-selected sample of 10 high-mass star-forming regions. Aims. In this study we examine the stellar content of the high-mass star-forming region centered on IRAS 06084-0611 in the Monoceros R2 cloud. Methods. Using the near-infrared H- and K-band spectra from the VLT/SINFONI instrument on the ESO Very Large Telescope (VLT)and photometric near-infrared NTT/SOFI, 2MASS and Spitzer/IRAC data, we were able to determine the spectral types for the most luminous stars in the cluster. Results. Two very young and reddened massive stars have been detected by SINFONI: a massive Young Stellar Object (YSO) con- sistent with an early-B spectral type and a Herbig Be star. Furthermore, stars of spectral type G and K are detected while still in the Pre-Main Sequence (PMS) phase. We derive additional properties such as temperatures, extinctions, radii and masses. We present a Hertzsprung-Russell diagram and find most objects having intermediate masses between \sim1.5-2.5 M\odot. For these stars we derive a median cluster age of \sim4 Myr. Conclusions. Using Spitzer/IRAC data we confirm earlier studies that the younger class 0/I objects are centrally located while the class II objects are spread out over a larger area, with rough scale size radii of \sim0.5 pc and \sim1.25 pc respectively. Moreover, the presence of a massive YSO, an ultracompact H ii region and highly reddened objects in the center of the cluster suggest a much younger age of < 1 Myr. A possible scenario for this observation would be sequential star formation along the line of sight; from a cluster of intermediate-mass to high-mass stars.Comment: 14 pages, 10 figures, 2 tables. Astronomy and Astrophysic

    Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions

    Get PDF
    For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation

    Performance of polarimetric beamformers for phased array radio telescopes

    Get PDF
    The results of four recently introduced beamforming schemes for phased array systems are discussed, each of which is capable to provide high sensitivity and accurate polarimetric performance of array-based radio telescopes. Ideally, a radio polarimeter should recover the actual polarization state of the celestial source, and thus compensate for unwanted polarization degradation effects which are intrinsic to the instrument. In this paper, we compare the proposed beamforming schemes through an example of a practical phased array system (APERTIF prototype) and demonstrate that the optimal beamformer, the max-SLNR beamformer, the eigenvector beamformer, and the bi-scalar beamformer are sensitivity equivalent but lead to different polarization state solutions, some of which are sub-optimal

    Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    Get PDF
    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 micrometre up to 6 micrometre. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (10^-3 Msol/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of 2 micrometre found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.Comment: Accepted by A&

    Polarimetry With Phased Array Antennas: Sensitivity and Polarimetric Performance Using Unpolarized Sources for Calibration

    Get PDF
    Polarimetric phased arrays require a calibration method that allows the system to measure the polarization state of the received signals. In this paper, we assess the polarimetric performance of two commonly used calibration methods that exploit unpolarized calibration sources. The first method obtains a polarimetrically calibrated beamforming solution from the two dominant eigenvectors of the measured signal covariance matrix. We demonstrate that this method is sensitivity equivalent to the theoretical optimal method, but suffers from an ambiguity that has to be resolved by additional measurements on (partially) polarized sources or by exploiting the intrinsic polarimetric quality of the antenna system. The easy-to-implement bi-scalar approach assumes that the feed system consists of two sets of orthogonally oriented antenna elements, each associated with one polarization. We assess its sensitivity and polarimetric performance over a wide field-of-view (FoV) using simulations of a phased array feed system for the Westerbork Synthesis Radio Telescope. Our results indicate that the sensitivity loss can be limited to 4.5% and that the polarimetric performance over the FoV is close to the best achievable performance. The latter implies that the intrinsic polarimetric quality of the antennas remains a crucial factor despite the development of novel polarimetric calibration methods

    RCW36: characterizing the outcome of massive star formation

    Get PDF
    Massive stars play a dominant role in the process of clustered star formation, with their feedback into the molecular cloud through ionizing radiation, stellar winds and outflows. The formation process of massive stars is poorly constrained because of their scarcity, the short formation timescale and obscuration. By obtaining a census of the newly formed stellar population, the star formation history of the young cluster and the role of the massive stars within it can be unraveled. We aim to reconstruct the formation history of the young stellar population of the massive star-forming region RCW 36. We study several dozens of individual objects, both photometrically and spectroscopically, look for signs of multiple generations of young stars and investigate the role of the massive stars in this process. We obtain a census of the physical parameters and evolutionary status of the young stellar population. Using a combination of near-infrared photometry and spectroscopy we estimate ages and masses of individual objects. We identify the population of embedded young stellar objects (YSO) by their infrared colors and emission line spectra. RCW 36 harbors a stellar population of massive and intermediate-mass stars located around the center of the cluster. Class 0/I and II sources are found throughout the cluster. The central population has a median age of 1.1 +/- 0.6 Myr. Of the stars which could be classified, the most massive ones are situated in the center of the cluster. The central cluster is surrounded by filamentary cloud structures; within these, some embedded and accreting YSOs are found. Our age determination is consistent with the filamentary structures having been shaped by the ionizing radiation and stellar winds of the central massive stars. The formation of a new generation of stars is ongoing, as demonstrated by the presence of embedded protostellar clumps, and two exposed jets.Comment: 18 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    Location and sizes of forsterite grains in protoplanetary disks: interpretation from the Herschel DIGIT programme

    Get PDF
    The spectra of protoplanetary disks contain mid- and far- infrared emission features produced by forsterite dust grains. The spectral features contain information about the forsterite temperature, chemical composition and grain size. We aim to characterize how the 23 and 69 micron features can be used to constrain the physical locations of forsterite in disks. We check for consistency between two independent forsterite temperature measurements: the 23/69 feature strength ratio and the shape of the 69 micron band. We performed radiative transfer modeling to study the effect of disk properties to the forsterite spectral features. Temperature-dependent forsterite opacities were considered in self-consistent models to compute forsterite emission from protoplanetary disks. Modelling grids are presented to study the effects of grain size, disk gaps, radial mixing and optical depth to the forsterite features. Independent temperature estimates derived from the 23/69 feature strength ratio and the 69 micron band shape are most inconsistent for HD141569 and Oph IRS 48. A case study of the disk of HD141569 shows two solutions to fit the forsterite spectrum. A model with T ~ 40 K, iron-rich (~0-1 % Fe) and 1 micron forsterite grains, and a model with warmer (T ~ 100 K), iron-free, and larger (10 micron) grains. We find that for disks with low upper limits of the 69 micron feature (most notably in flat, self-shadowed disks), the forsterite must be hot, and thus close to the star. We find no correlation between disk gaps and the presence or absence of forsterite features. We argue that the 69 micron feature of the evolved transitional disks HD141569 and Oph IRS 48 is most likely a tracer of larger (i.e. ~10 micron) forsterite grains.Comment: Accepted for publication in A&A. 14 pages, 9 figure
    • …
    corecore