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Polarimetry with Phased Array Antennas:
Sensitivity and Polarimetric Performance Using
Unpolarized Sources for Calibration

Stefan J. WijnholdsSenior Member, IEEEMarianna V. IvashindMember, IEEE Rob MaaskanMember, IEEE
Karl F. WarnickSenior Member, IEEE

Abstract—Polarimetric phased arrays require a calibration
method that allows the system to measure the polarization ate
of the received signals. In this paper, we assess the polaratric
performance of two commonly used calibration methods that
exploit unpolarized calibration sources. The first method dtains
a polarimetrically calibrated beamforming solution from t he two
dominant eigenvectors of the measured signal covariance .
We demonstrate that this method is sensitivity equivalenta the
theoretical optimal method, but suffers from an ambiguity that
has to be resolved by additional measurements on (partialjypo-
larized sources or by exploiting the intrinsic polarimetric quality
of the antenna system. The easy-to-implement bi-scalar appach
assumes that the feed system consists of two sets of orthogtn
oriented antenna elements, each associated with one polzation.
We assess its sensitivity and polarimetric performance ovea
wide field-of-view (FoV) using simulations of a phased array
feed system for the Westerbork Synthesis Radio Telescope.u®©
results indicate that the sensitivity loss can be limited to4.5%
and that the polarimetric performance over the FoV is close
to the best achievable performance. The latter implies thathe
intrinsic polarimetric quality of the antennas remains a crucial
factor despite the development of novel polarimetric calibation
methods.

Index Terms—phased array antennas, polarimetry, calibration,
beamforming, far-field radiation pattern

|. INTRODUCTION

upgrade of the Westerbork Synthesis Radio Telescope in The
Netherlands [5], the Australian SKA Pathfinder (ASKAP, PAF)
in the Western Australian Desert [6] and the Long Wavelength
Array (LWA, AA) in the US [7].

The goals of these instruments for future radio astronomy
research require high system sensitivity for detectingkwea
radio signals and accurate reconstruction of the polaoizat
state of these signals. A polarimetric antenna system,bdapa
of sampling the incident field by two orthogonally polarized
receptors, can fully reconstruct the polarization statethef
field. This reconstruction can be done by invertin@ & 2
transfer matrix that relates the two output signals of the
receiver system to the polarization state of the field reszehy
the system [8]. In polarimetric systems, calibration sdaudt
only compensate the gain differences between the receiving
elements to provide maximum sensitivity at the beamformer
outputs, but also ensure that the covariance between the two
beamformer output signals allows proper reconstructiothef
polarization state of the incident field. In a recent papgrtf&
authors have developed a system model and used it to retate th
astronomical performance criteria to standard IEEE défimst
for polarimetric antennas and to find a beamforming algorith
that simultaneously optimizes for minimum system noise and
polarimetric accuracy. In this paper, we use this framework

Polarimetric phased array antenna systems are commomlyassess the polarimetric performance and sensitivityvof t

used in imaging radar applications [1], [2], but are reklfv

commonly used calibration methods that exploit unpolarize

new in the field of radio astronomy. The radio astronomicgburces. This is particularly relevant, because the nigjori
community is developing the Square Kilometre array (SKA)f extragalactic radio sources with a continuum spectrum,
[3], a future radio telescope that is envisaged to be an ordehich are typically used for calibration of radio telescepe

of magnitude more sensitive than present-day instrumerdse weakly polarized or unpolarized and hence calibration
Phased array antennas will play a crucial role either asa@er methods based on polarized reference sources are usually no
array (AA) or as phased array feed (PAF) for reflector anteapplicable.

nas. Several precursor and pathfinder systems using phased @A recently proposed method exploits the two dominant
ray antennas are currently in use or being developed. Exsmmigenvectors of the signal covariance matrix measured on an
of such instruments are the Low Frequency Array (LOFARinpolarized source with a dual-polarized array [10], whigh

AA) in Europe [4], the aperture tile-in-focus (APERTIF, PAF will refer to as eigenvector method. This method may cause
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a large unknown change of the orientation of the polariratio
axes of the instrument, as we demonstrate in this papersand i
therefore unsuitable for application in actual systemsaeuit
further polarimetric corrections. These polarimetricreations
either require additional measurements on polarized sswt

R. Maaskant is with Chalmers University of Technology, Hmairelying on the intrinsic polarimetric quality of the system
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A second commonly used method exploits the fact that
feed systems usually consist of two sets of orthogonally
oriented antenna elements. For such systems, it is common
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E(r,t) = Ey(r,t)u+ Ey(r,t)0 The antenna output signals are amplified to form ftie
element output voltage vector and are subsequently com-
bined into the beamformer output voltages and v» using
the N x 1 beamformer weight vectors; and ws.

””””””””””””””””””””””””””” At a fixed positionr, E, (r,t) and E, (r,¢) are complex
random processes in the phasor or complex baseband repre-
sentation. The polarization state of the field is determibgd

the correlation matrix of the two field components, which is

2[% auv} (IBS) (BuED)
| ova ow | <E3EV> <|EV|2> ’

where (-) denotes the expected value. For an unpolarized
source, we hav& = 1.

We will model the phased array antenna signal output
in terms of the voltage response vectors of the arkay,

)

i w2 and v,, containing voltages at the array receiver outputs

,,,,,,,,,,,,, {% before beamforming induced by unit intensity, linearly po-
. . larized waves having their polarization aligned withand

vr=wiv V2 =WyV ¥ respectively. Theoretically, these voltages can be medsur

Fig. 1. A radio polarimeter comprised of a dual-polarizedivaty beam- using a referenc? squrce producmg two S|gnals with péyfeCt
formed receiving antenna array. orthogonal polarizations.

For an arbitrary polarized wave, the array signal voltage

response vector can be formulated in termsrgfandv, as

practice to calibrate the two sets independently and toyagpl
single polarization correction at the end. This bi-scalathmd Vs = Euvu + Eyvy. ®3)
imposes additional constraints on the system design,diu The array output signal covariance matrix is
manufacturing tolerances. We assess the stringency oé thes
constraints by comparison with the theoretically optimei-p R, = (vovl') = vV, (4)

formance using theoretical analysis and simulations. where we have introduce¥ = [v.,v,]. Assuming that the
. . . . - - uy Yv]r
This paper is organized as follows. We start by mtrodum%ased array system noise can be characterized by a noise

the system model and performance metrics used to ,assessc%riance matrixR,, the covariance matrix of the array
performance of the antenna system. In Sec. Il we mtrodugﬁtput voltagev can be described as

the calibration methods and discuss their theoreticaloperf
mance. We then introduce a simple analytic dipole model in R = <va> =R+ R, =VEV? L R,. (5)

Sec. IV to demonstrate the impact of the unitary ambiguity irJrhe noise covariance matrix can be determined using an off-

troduced when calibrating on an unpolarized source and Sh(s)g)vurce measurement on an emoty part of the skv. i.e.. a part
how the polarimetric quality of the methods exploiting thé Py P Y, 1€, ap

Lo . . . of the sky without significant source structure. The noise
intrinsic polarimetric quality of the antenna system defsen variance matrix includes factors such as noise couplig a
on the orthogonality between the feed systems. In Sec. P

spillover noise.

we present S|mu_lat|ons_for an gctual PAF system 1o asse Fhe beamformer output covariance matrix is obtained from
the impact of using a bi-scalar instead of a full-polaririzetr I o

o . . the beamformer output voltages, = wi'v andve = wy' v,
approach on the sensitivity and polarimetric performanaes o

the field-of-view (FoV). We show that the sensitivity lossica
be limited to 4.5% while the polarimetric performance over <[ - } [ o rr>

(lnf*)  (orvg)
(vive)  (Jval?)

the FoV is comparable to the best achievable performance. R, = (6)

V2 V2

Il. THEORY . . . : .
In terms of the signal and noise covariance matrices intedu
A. System model earlier, this can be written as
Figure 1 shows adv-element polarllmetr_lc phased array. B wHRw, wlRws
The antenna system is assumed to be illuminated by a pugrtiall R, = H H
. e . . wy Rw; w5 Rws
polarized source. The electric field intensity vector reaticby "
such a source is = [wi wo | TR[w1 wy |
— _ H H
E(r,t) = B (r,0) 7 + Ey (r, )0, @) = W7 (VEVY +R,) W

N R . . = Reo, + Ron, 7
where u and v are orthogonal unit vectors according to o5+ Hon (7)

a certain specific Ludwig’'s definition [11] relative to thewhereR,s andR, , are the beamformer output covariance
coordinate system of the array. matrices due to the signal and the noise, respectively.
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provides a system level view of the phased array antenna

J J-1 system. The polarimetric properties of the source are d&fine
instrument pol. correct 1 by the source covariance matr. This is transformed to
I Ro : IS the beamformer output covariance matR, (equal toR, ¢

in the noise free case), that is used for further processing
to produce a reconstructed source covariance maifithat
should ideally be proportional t&. An ideal system does
B. Useful concepts not require polarimetric correction, since it has= I, where

I denotes the identity matrix, i.e., it leaves the covariance

1) Sensitivity equivalenceThe combined sensitivity, ex- . . . .
ressed as the ratio of effective aperture afiesand system matrix of the input signal unchanged and does not introduce
P P y so-called instrumental polarization. Sinde = WV, the

temperatqr.élfsys,_ of the tv_vo beamformer output.s, t.h € beanPnstrumental polarization introduced by the antennas dhero
pair sensitivity, is determined by a linear combination foé t

two output signals. This can be obtained from [8] analog electronics can be compensated for in the beamformer
P 9 ' 3) Max-SNR beamformingfhe highest signal-to-noise ra-

Fig. 2. A system level view of a radio polarimeter.

Ae kaSNR _ kyB a"WH"RWa ®) tio (SNR) for theu- andv-polarized signal is achieved by the
Teys  Ssig ~ Sg af WHR,,Wa’ max-SNR beamformer [12]
wherea = [a1, as]” is an arbitrary vector other than the null WgenR = R;1V. (12)

vector, Sy, is the power flux density of the received signal _ . N
expresed in W/, k, is the Boltzmann constant aridl is the Although this beamformer does not calibrate the polarimetr
bandwidth response of the array, it does provide the maximum sengitivi

4) Optimal beamformingif we know the voltage response

As shown in [9], the beam pair sensitivity is bounded by ! }
vectors to two perfectly orthogonally polarized signais,

kB Amin Ae < kB Ao (9) andvy, and the noise covariance matrik,,, we can derive
Ssig T Tays — Ssig 7 optimal weights for the beamformer that ensures minimizati
whereAmin and \nax are the smallest and largest eigenvaluef the noise in the measurement and perfect reconstruction o
of the polarization properties of the source. This optim@atian
C=VHEwW (WHRHW)_l WHV. (10) be formulated as the constrained minimization problem

By replacingW with W/ = WA where A is an arbitrary Wopt = argmin tr (W”R,W) subject to W’V =1
invertible 2 x 2 matrix, it is easily seen thaf is independent w (13)

of a linear transformation of the beam subspace and therefrcan be shown that the solution to this optimization proble
of the polarimetric calibration. We will refer to beam patinsit s given by [9]

are related by such a transformation as sensitivity ecemtal .

beam pairs. This transformation signifies that all serigjtiv Wepe =R, 'V (VIR'V) . (14)
equivalent beam pairs lie within the same two dimensional This pair of beamformer weight vectors minimizes the re-

subspace of thevV-dimensional space of complex valudd : . : ..

: sponse to the system noise while constrained to be polarimet
element vectors. There are many possible rank two subspac . : ) L

. : L cally calibrated. We will refer to this calibration methosl the
but only one that includes the maximum sensitivity beam-

. Hp -1 —1 .
former. Within each two dimensional subspace, there is oﬂBt'm"jl rsethﬁgd.t';?(et;aito(rv ”R“ V) | r(i;rin tt;|e mterrrpretgeg i
unique beam pair that is polarimetrically calibrated. as a Jones ma at appiies a polanmetric correction 1o

Transformations applied after beamforming necessaidy st_the max-SNR beamformer weights. If the Jones matrix is

within one two dimensional subspace. Sensitivity equived invertible, an assumption that should hold for polarintetri

implies that the beamformer weights can be described %rgayg,’\'lt;eboptm;al bearr:ormertls sen?tlwfy egl{{?]/alermeSNR
Wcor, WherelJ,,, is a2 x 2 matrix describing a polarimetric max- eamiormer. Rnence, the optimal an € max-

correction. If a beamformer can be formulated in this forme, t begmforme:hwelgtths slpgn th? same S.uESptice an_dhvtwthlntthls
polarimetric correction can be done after beamforming tith subspace, the optimal beamlormer picks the weignt vectors

affecting the sensitivity bounds of the beamformer given b at provide the oppmal pqlarlmetr|c response. The same
). esponse can be achieved with the max-SNR beamformer only

ae ; ; - with an additional polarimetric correction after beamfang
esﬁ%;?gsznn;fzg?;ge?8(7?Or:guiree:tgase or with noise 5) XPD and XPI:Following standard IEEE definitions, the
cross-polarization discrimination (XPD) and cross-piakzion
R, = WHIVEVIW = Jx2JH (11) isolation (XPI) can be expressed in terms of Jones matrix
elements as [13]

where we have introduced tlex 2 Jones matrixd = WHV.
2

This Jones matrix represents the transfer function of the in |J11]? | Jo2]
strument including antennas, receiver chains and beanvigrm XPDy = |J21|2 XPDy = |J12|2 (15a)
scheme, that transforms the two input voltages adhering to 1y |2 ¥ |2

11 22

a suitable polarimetric definition into two output voltages XPI, = 5 XPI, = 5 (15b)
possibly adhering to another polarimetric definition. FegQ |J12] | Ja1
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6) Intrinsic cross-polarization ratio: Since the goal of To compare this beamformer with the optimal solution
polarimetric phased arrays is to reconstruct the polarimetpresented in the previous section, we note that the voltage
properties of the source signal, preservation of theseripolaesponse vectorg, andv, must span the same subspace as
metric properties by the Jones matiirof the instrument need the eigenvectors; andv,. This implies that
not be a design goal by itself as long as the source coherency
can be reconstructed by a polarimetric correctiort. This V = VeigJeis, (19)
idea led to the definition of the intrinsic cross-polarieatratio where the2 x 2 Jones matrixJ.;, describes the transformation
(IXR). The IXR provides a measure for the reconstructapilifrom v; andv, to v, andv,. The weights obtained by the

of X (invertibility of J) and is defined as [13] eigenvector method can thus be described as
IXR — <H ) + 1)27 (16) Wiy = Ry 'VI L (20)
r(J) -1 Substitution in (14) gives
wherex (J) denotes the condition number &f .
The IXR provides an upper limit on the relative error in the Wopt = Ry 'Veigleig (VHRrTlVeigJeig)
reconstructed Stokes vectSrthat is given by [13] = W (VH Weig)ﬂ (21)

ISsll & 1+IXR IvVL| IS0, alent. This implies that one beamformer can be transformed
(17) into the other by an additional polarimetric correctioneaft

where|| - || denotes the Euclidian nornff AM|| denotes the beamforming.
calibration error in the Mueller matrix anfAS|| denotes  Unfortunately, a single measurement on an unpolarized
the measurement error in the Stokes vector. Note that thaurce does not provide sufficient information for full pela
term involving the IXR describes an increase of the relativeetric calibration. This can be demonstrated by subsbituti
Stokes error compared to a system with perfectly orthodpnabf (19) in (4) with 3 = I. This gives
polarized feeds. For example, if the noise on the obsenvatio H H ~rH
causes a relative error (uncertainty) on the measured Stoke Ry = VIV = VeigJeigJeig Veig:
vector of 1% and the relative error in the instrument modéi we replacel.;; by J;, = J.i; U, whereU is an arbitrary
(due to, e.g., calibration errors) is 1% as well, such a systaunitary matrix, we get
would have about 1.4% relative error in the reconstructed ,

[ASs]| (1 AVIXR ) (||AM|| n ||ASo,s|> This shows that the two beamformers are sensitivity equiv-

(22)

. R. = V..J.  JHVH
Stokes vector. An IXR of 25 dB may (note that (17) gives s clg*eigteig  eig
an upper bound) cause a 22% increase in this error, which = Vel UUTIE VI
may therefore increase to 1.7%. = VeigJeig Jggvgg, (23)
1. CALIBRATION USING AN UNPOLARIZED SOURCE i.e., we get exactly the same solution. This shows that oa-me
. . , icpurement cannot discriminate betwe&n, and J;,, which
The majority of continuum extragalactic sources, whic e

implies that the relation betweevi and V., given by (19)

Yas a unitary ambiguity.

This polarimetric calibration problem has been studied in

g}ail by Hamaker [14]. He found that the physical signifi-

cance of the aforementioned unitary ambiguity is described

b}/ polconversion and polrotation. Polconversion is thecff

fhat part of the unpolarized power is detected as (“conderte

to") polarized power. Polrotation refers to a rotation ofahx

. ratio change of the polarization ellips. This unitary amiiig

A. Eigenvector method can be resolved by additional measurements on two distinctl
For a polarimetric array, neglecting estimation error, theolarized sources or by imposing additional constraintshen

signal covariance matri®, measured on an unpolarizednstrumental Jones matrix as discussed in [14], [15]. Relyi

source has rank 2. If the system consists of two sets of ootho@n the intrinsic polarimetric purity of the receiving elente

nally polarized feeds, there is hardly any correlation leefv as discussed in the next sections is an example of such an

the receiving elements in the two sets when measuring additional constraint. In Sec. IV, we demonstrate the irhpac

unpolarized source. Intuitively. the two dominant eigertees of ignoring this ambiguity using a simple dipole model.

will each be associated with one set of feeds. This naturally

suggests the use of the two principal eigenvectorsandva, B, Eigenvector method with bi-scalar approximate calitat

to form the maximum SNR eigenvector beamformer weight

vectors [10]

are typically used for calibration, are weakly polarized
unpolarized. Calibration of radio telescopes therefociires
methods that exploit unpolarized reference sources. Ia thj
section, we discuss three proposed methods. We will see t
we cannot do a full polarimetric calibration of the systentyon
using an unpolarized source. Two of the proposed methoyls r
on the intrinsic polarimetric characteristics of the ingtent.

Since the eigenvector method produces a pair of beam-
W... = R-1V., (18) former output signa_ls that are only polqrimetrically qctre

e noTels up to a unitary matrix, we would like to find a correction to
whereV;, = [vy,vs]. We will refer to this approach as theensure well-defined polarimetric characteristics at thanbe
eigenvector method. former output. This can be achieved by assuming that the
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system consists of two sets of feeds that have an orthogoimaplications of ignoring this term, we note that, in general
polarimetric response as proposed in [9]. For analysis ofi suthe voltage output of the beamformer is given by
a system, it is convenient to partition the signal covamanc I "
matrix as WHy = [ Wuu Wuy } v
Rs,uu Rs,uv :| (24) w w

v,u v,V

RS - |: Rs,vu Rs,vv

J— Wu u O + 0 u,v v

, . B 0 wi wil 0 ’

The submatrices ai¥ /2 x N/2 matrices and we have assumed ' ’ 29
that the first N/2 elements are optimally matched to- (29)

polarized signals while the second/2 elements are optimally \yhere w,., denotes the weight vector assigned to the
matched tov-polarized signals. The matrices polarized elements for the beamformer output associatét wi
R.y, O 0 0 v-polarized signals and similar definitions fet, ,,, w , and
Rs,u = |: d 0 :| and Rs,v = |: 0 R. :| ) (25) Wy v
o Since the weightsv, , need to be applied to thepolarized
have rank one with principal eigenvectors and v, respec- elements although they are associated wiffolarized signals,
tively. These vectors can be used to find the approximatesJong can exploit the ability of typical PAF systems to form a
matrix cross-polarization beam for the signals from tholarized
J=wIivV, (26) elements and similarly for the-polarized elements [16]. Once
_ both co- and cross-polarized beams are formed, we can add
whereV = [v,,, v]. This Jones matrix can be used to calibratgie appropriate beam signals to reconstruct the outpuaisign
the beam pair to obtain of a full polarimetric beamformer. This approach doubles th
W W J-H 27) number of beams to be formed. Since the total bandwidth of
approx €8 : the beamformer (number of beams times the bandwidth per

Since v, and v, are only determined up to a scale facto€am) is limited by the digital hardware, we can only apply

further normalization may be required as discussed in [9]. this scheme by sacrificing half the bandwidth per beam to
allow for twice as many beams (the co- and cross-polarized

_ beams). This reduces the sensitivity for continuum soubges
C. Bi-scalar method a factor/2 and the survey speed by a factor 2. This may not

Most astronomical phased array systems consist of two s8@¢m attractive, but some observations, such as interériom
of feeds, each optimally matched to a single polarizatidiis T Observations with other telescope systems, may not need the
can be exploited by calibrating and beamforming both feddll bandwidth of the system in which case this scheme may be
sets separately, which simplifies the design of the system c@pPplied without its drawbacks. This is an important conicias
siderably, since this approach requires two identical @ssing for instruments with a bi-scalar design that can form mistip
systems that each have to deal with oAly2 signals, instead beams within the FoV like APERTIF. However, calculation
of a Sing|e System withV inputsy thereby S|mp||fy|ng Signa| of these WelghtS requires knOWledge of the full Signal and
routing and saving half the compute power for correlation ¢ise covariance matrices, which implies that these system
the input signals. This is referred to as a bi-scalar approaétill need to provide a facility that can correlate the signa
Since this method treats both sets separately, it ignores ffPm any feed pair in the system for calibration of the array,
cross-terms between the two sets of elements in the sigaliiough, for example, with a reduced bandwidth.
and noise covariance matrices. For our analysis, it is tbere
convenient to partition these matrices as indicated in. (%) IV. DIPOLE MODEL ANALYSIS

can then formulate the bi-scalar beamformer as _ . . .
In this section, we present a simple dipole model and

Wi . — RE}Ju 0 S 2g) Use it to provide some insight in the impact of the unitary
bi—s = 0 R-! [V, Vy] - (28) - . . . . .
n,vv ambiguity discussed in the previous section on the polarime
performance of the instrument. We also use this dipole model

polarized signals respectively such tHaf,., = Ry, = 0, to assess the impact of non-orthogonality in the polarimetr

the bi-scalar approach gives the same result as the Optir{%aponse of the receiving elements for the methods that rely

method or the eigenvector method and is therefore semysitiv?n the intrinsic orthogonality of the feed sets.

equivalent. Otherwise, the bi-scalar beamformer intreduz
beamforming error due to neglecting the cross-polarigatia, Description of the dipole model

response of the elements. The impact on sensitivity depend|s:0r this simple model, we assume that each antenna consists
on the antenna responses. Using (9) we can determine the | ’

. e o SPRwo co-located ideal dipoles in the;, y)-plane making an
in sensitivity for a specific antenna system. . 2t
. . ) . angle ¢ with each other. The open circuit responses of the
A full polarimetric beamformer combines thepolarized

. A dipoles for broadside incidence are then proportional to
power picked up as co-polarization in theelements and as P prop
cross-polarization of the-elements. The latter contribution 1 0
. . . VOC X 3 )
is ignored by a bi-scalar beamformer. To get a feel for the ycos¢ ysing

If the two feed sets are perfectly matched #e and v-

(30)
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Fig. 3. Comparison between the elements\of. predicted by an EM- Fig. 4. Comparison between the elementsRuf .. predicted by the EM-

simulation [17] of two crossed short dipoles and those glvei(32) assuming
v =1 and8kT R,,q = 1. The results for the two off-axis elements and the
two on-axis elements dRy .. are identical, as expected from symmetry.

simulation [17] of two crossed short dipoles and those glyei(30) assuming
~v = 1. The curve for the modeletf22 overlaps with the simulatetfas.

where~ is the gain of the second dipole assuming that the . _
receive voltage of the first dipole is 1 V. The open circufetween the dipoles, we assume that the dipoles have the same

signal covariance matrix for an unpolarized source is th@®in, i.e., thaty = 1. Solving for the eigenvalues using the
proportional to characteristic polynomial, we find that

A2 =1+ cos¢. (33)

Rioc = Voo VE [ (31)

1 ~ cos ¢ }
2 .
COS . . .
_ vcos¢ 7 We can now solve for the eigenvectors associated with each
UsingR., oc = 8kTRe{Z4 }, whereZ denotes the antennaeigenvalue. It is straightforward to show that for+# /2

impedance matrix, we find that, to first order, mod T,

1 Y cos ¢
~ cos ¢ ~? ’
where R,.q is the radiation resistance. In the loaded cas

we haveR; = QR;,.Q and R, = QR, ,.Q", where ) ) c -
of the system remains continuous when using the eigenvector

Q=2Zr(Zp + ZA)’1 with Zg denoting the input impedance ] - |
of the receiving network. We need expressions for the imaép_ethod. Although this analysis was done for a single antenna

nary part of the antenna impedance matrix g to obtain consisting of two crossed dipoles, it can easily be showh tha

expressions foR. andR.,, which will be more tedious than the results also hold for an array of identical antennas &her
S ns . . . « . « -

the expressions for their open circuited counterparts rgivléhe coupling between antenna pairs is negligible. This ispl

above. For our educational example, we therefore choosetiigt the results obtained from the analysis of a single awaten

use the open circuited case, i.e., to assume that the anteffifa &!S0 be applied to a full array.

ports are connected to voltage amplifiers.
To verify this seemingly simple model, we did an EM-C. Impact of the unitary ambiguity

simulation [17] with two crossed short dipoles making an |, this section we will demonstrate the effect of the unitary
angle¢ with length L = A/4, width w = A/640 and inter- ampiguity by comparing the Jones matrix and beamformer
element distancedz = 2w. Figure 3 compares the openyyiyt signal covariance matrix for the optimal method and

circuit voltages obtained from the EM-simulation with tRos;e eigenvector method. It is straightforward to show tloat f
described by the analytical model while Fig. 4 makes a similg, o optimal method

comparison for the elements of the noise covariance matrix.

(34)

(32) 2 1

and thatV;, =T if ¢ = 7/2 mod w. Although V., shows
a’ discontinuity atp = 7/2, we will see that the response

1 1 1
Riuoc & 8kT Rrad { Vei = 5V2 [ -1 }

For convenience, we have assund’R,.q = 1 and~ = 1. Jopt =WH. V=1 (35)
These results show that our analytical model is rather ateur
especially for the crucial range wheteis close t090°. The such that

' Ros = JoptJi, =1L (36)

differences are primarily due to the finite strip width of the
numerical model. In a similar way, we can show that for the eigenvector method

. N 1 lf'cosqb
B. Eigenvalue decomposition Jeig = W,V = % [ L ) ] . (37)
sin ¢

For the analysis of the eigenvector method, we compute the
eigenvectors of the signal covariance matrix given by (3lhere we assumed a proportionality constant in (32) equal
Since we are interested in the impact of non-orthogonality unity. It is interesting to note that substituting= /2
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in (37) gives the same result as obtained Mg, = I,

. . - . 50 w w

i.e., the discontinuity atp = =/2 mod = found in the —— eigenvector

eigenvalue decomposition vanishes when the result is exppl o eigenvector with correction
in the eigenvector beamforming scheme. Using (37) we fit 40f| x bi-scalar

that the beamformer output signal covariance matrix for tt
eigenvector method is given by

[ 2sin® (¢/2) 0
Ros = 0 2cos? (¢/2) |- (38)
Equation (37) shows that ip is close t090°, i.e., if the
polarimetric responses of the dipoles are (almost) orthafjo
the magnitudes of the entries of the Jones matrix are (a)mc
equal. This indicates that the two input polarizations radid

with & and v are mixed to form two output signals that 0 ‘ ‘ ‘ ‘ ‘
are aligned with two other axes. However, if we look at th 60 65 70 75 80 85 90
beamformer output signal covariance matrix for an unpoéari @ (degrees)

source, it seems that the system preserves the properties of
y P prop Fig. 5. IXR as function of the angle between the two dipoles tfte

. . . . ig.
the sogrce. ThIS_, C(_)unter _|ntU|t|ve result can be explalnyad Qigenvector method, the eigenvector method with bi-saadarection and the
the unitary ambiguity, which works on the Jones matrix, but-scalar beamformer.

cancels itself in the beamformer output signal covarianee m

trix, i.e., we have developed a beamforming scheme thasgive = )

perfect results for unpolarized sources, but gives erragedalibration show_s that the eigenvector me_thods are not able

results in observations on polarized sources. to .produce a pair of bgamformer output S|_gnals thqt is more
It will also yield wrong results if the two beamformer outpugUitable for reconstruction of the polarimetric propestz the

signals are correlated to the two beamformer output signdMUt signal than the bi-scalar beamformer when the dipoles

of another antenna system with a well-defined polarizatiof® close to orthogonal. This indicates, that these metiaigls

This situation may occur in practice when multiple teleseof?n the polarimetric quality of the antenna system. An inait

systems are linked together. Hence, it is important that tg¥Planation for this result, is that all these methods use an

voltage response of the system described by the Jones risatrik"Polarized source for system calibration and thus have to

well defined. This argument shows that the eigenvector neth@!Y 0N the intrinsic polarization quality of the antennateyn

is not suitable for use in an actual system unless appreprift €solve the unitary ambiguity. Since most astronomical

corrections are made to the beamformer output signals. calibration sources are not or only weakly polarized, this

If we apply the bi-scalar approximate calibration discdssdmPplies thata well-designed antenna system is invaluabten
in Sec. 11I-B to the dipole model, we find given the material presented in this paper. An IXR of 25 dB

limits the potential increase in the relative Stokes ernaird)

Japprox = WH v — Colw 0 _ (39) reconstruction to 22% as indicated by (17), which requires
P smg L ¢ > 83.7°.

This shows that if the dipoles are close to orthogonal, i.e.,Since the eigenvector method with bi-scalar correction is
if ¢ ~ 90° then Juppox ~ I, which is close to the sensitivity equivalent to the optimal beamformer and has th

desired response. This shows that the unitary ambiguity cé@&me IXR as the bi-scalar beamformer, which has lower
be resolved by the intrinsic properties of the system, bat trSensitivity than the optimal method, it seems to be the best

the accuracy of that correction depends on the orthoggnafiethod for calibration of a practical radio telescope syste
in the polarimetric response of the two feeds. on one of the available celestial calibration sources, whie

usually unpolarized.
It follows from (39) and the definitions given by (15a) and

D. Impact of non-orthogonality _ > 9 i
. ) . (15b), that for the eigenvector method with bi-scalar cction
In our next simulation, we look at the impact of non-

orthogonality between the dipoles by comparing the IXR as XPD, = tan? ¢ XPD, = o0
defined in (16) of the beamformers for different inter-dipol XPI, = 0 XPI, = tan? ¢.
angles. Sincd « I for the optimal method, the IXR is infinite ) _

for this method regardless of the orientation of the dipoleSimilarly, we find for the bi-scalar beamformer that
The IXR for the optimal method is therefore not shown in 1

Fig. 5. As derived in the appendix, the IXR for the eigenvecto 1 Du = cos? psin® ¢ XPDy = 0o¥¢ # 0
method is conveniently described by XPI, = 0o XPI, = tan? ¢.

2
IXReip = <1+ta7n(¢/2)) ) (40) These results are asymmetric in the two polarizationsesivee
1 —tan (¢/2) defined our dipole model such that one dipole is aligned with
Comparison of the IXR for the bi-scalar method and for thene of the polarization axes. Since rotation of the polsidra
eigenvector method with and without bi-scalar approximasxes is described by a unitary matrix, such a rotation does
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Fig. 6. Arrangement of the 37 beams produced by the APERT#tesy

over the FoV of the WSRT. Fig. 7. Average sensitivity of the two beamformer outputngig for the

bi-scalar method and the optimal beamformer at the cenfeitsed37 beams
formed by the APERTIF system. The beam indices corresportietdeam
o ) _ numbers given in Fig. 6.
not affect the condition number of the Jones matrix making
the IXR insensitive to such a transformation. These resu'*~
indicate thatp > 83.7°, required to achieve an IXR of 25 dB,

corresponds to an XPD of at least 19 dB.

55
V. BI-SCALAR BEAMFORMER PERFORMANCE

The bi-scalar approach is commonly applied in actu 50
phased array systems. However, in this paper, we have shc
that the bi-scalar beamformer is not sensitivity equivaten
the optimal beamformer and that it relies on the intrinsi
polarimetric orthogonality of the feed system. We wouldéie
fore like to assess the sensitivity and polarimetric penfmce 40
of the bi-scalar beamformer in an actual system to see whet
it provides acceptable performance. For this assessment,
use results from EM-simulations from the Aperture Tile-in
Focus (APERTIF) project. The goal of this project is tc
develop and build a PAF system for the Westerbork Synthe
Radio Telescope (WSRT) located in The Netherlands to i
crease its field-of-view (FoV) [5]. The APERTIF system will
be able to produce 37 beams on the sky that will probably B@. 8. IXR of the bi-scalar beamformer at the centers of tHeARERTIF
arranged in a hexagonal pattern separated by about haIfrpoW‘é‘mS- The beam numbers correspond to the beam numbering shBig. 6.
beam width as indicated in Fig. 6.

5 10 15 20 25 30 35
beam index

30 I I I

A. Performance in the compound beam centers of the microstrip transmission line feeding the slot. Also,
The APERTIF system was simulated using a full-wave ENhe antenna elements are positioned diagonally over a esquar
package [18]. Figure 7 shows the average sensitivity of tgound plane which results in different element configorati
two beamformer outputs for the optimal beamformer and ti@r polarization at the corners of the array.
bi-scalar beamformer, while Fig. 8 shows the IXR of the bi- These results are similar to those found for an earlier
scalar beamformer. All results were obtained for the beaAPERTIF prototype system [16], [18]. Measurements done
centers at 1.4 GHz. From these results, we conclude that uwsth the APERTIF prototype system mounted on one of the
of a bi-scalar beamformer leads to about 4.5% sensitivég Io0WSRT dishes confirmed the sensitivity loss, but also indidat
compared to the optimal beamformer and that the typical IXfRat the practicalities of an actual system reduce the ratio
will be about 38 dB with a peak value of 59 dB for the centralf cross- to co-polarized power observed on an unpolarized
compound beam. Note that the IXR in Fig. 8 is asymmetraource to about 28 dB [16]. This was considered acceptable,
with respect to the central beam with index 19. This is causbdcause the cross-polarization level can be improved by ap-
by the asymmetrical circular cavity terminating the tapereplying appropriate polarimetric corrections to the beammfer
slot which has been bended sideways to reduce the lengtliput signals while the sensitivity loss can be recovengd b
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Fig. 10. IXR (in dB) for all 37 beams produced by the APERTISteyn.

orthogonality between the two sets of orthogonally oridnte
antenna elements, which works very well in bore sight (the
central beam), but deteriorates towards the edges of the FoV
The results shown in Fig. 9 indicate that an appropriate
correction for the polarimetric response of each PAF valtag
beam is required in the image processing to reconstruct the
polarimetric properties of the incident waves regardleks o
the beamforming approach used. The reconstructabilithef t
polarization state of the received signals is measured by th
IXR, which is shown in Fig. 10 for the bi-scalar beamformer.
The simulations indicate that the inner 7 beams have an IXR
X ( degrees) better than 40 dB over almost their entire beam area, whie th
compound beams at the edges of the FoV still have an IXR
Fig. 9. |Ji2] for all 37 beams produced by the APERTIF system for th@f at least 25 dB. This gives an upper limit on the increase

optimal beamformer (top) and bi-scalar beamformer (bojtdrhe color scale in the relative measurement error on the Stokes vector of 4%
2;‘;323ﬁ dOLgaBmW'th respect to the value [ofi. | at the peak of the central 54 2204 for the central beams and for the edges of the FoV

respectively as predicted by (17). This should be sufficient
allow accurate reconstruction of polarized signals withitied

forming cross- and co-polarized beams as discussed in S¥Sitivity reduction due to image processing.
1-C.

y (degrees)

VI. CONCLUSIONS

) In this paper we discussed the polarimetric and sensitivity
B. Behavior over FoV performance of calibration schemes that exploit an unpolar
In the previous subsection, we assessed the performairesl reference source. We demonstrated that the eigemvecto
of the bi-scalar beamformer at the beam centers. Anotheethod is sensitivity equivalent to the optimal beamformer
concern is the behavior of the PAF voltage beams over th&ihis implies that the eigenvector methods can exactly repro
respective FoVs, since the image processing should cdmectduce the result obtained from the optimal beamformer with an
this response. Figure 9 therefore shows;| for the optimal additional polarimetric correction after beamforming.
method and the bi-scalar method over the FoV at 1.42 GHz.We have demonstrated that the eigenvector method is not
This shows that both beamformers suffer from the directicuitable for use in an actual system without additional cor-
dependent polarimetric response of the two feed systents, tection, because this method ignores the unitary ambiguity
that the optimal beamformer does a better job at the bedmtrinsic to calibration on an unpolarized source. This am-
centers of the compound beams towards the edges of Higuity needs to be resolved either by imposing additional
FoV. For the optimal beamformer, there is always a smalbnstraints on the system response, such as relying on the
region around the beam center in which the instrumeniatrinsic polarimetric orthogonality between the feeds,by
crosspolarization is less than -45 dB while the bi-scalanipe additional calibration observation on two distinctly pitaed
former produces some beams with -30 dB crosspolarizatisaurces.
in their field centers. This can be explained by the fact that The bi-scalar beamformer is not sensitivity equivalenti® t
the bi-scalar beamformer relies on the intrinsic polariioet optimal beamformer and relies on the intrinsic polarineetri
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polarimetric orthogonality of the feeds, the gradient o5t g k. F warnick, M. V. lvashina, S. J. Wijnholds, R. Maaskaand B. D.

orthogonality over the FoV causes variations in polarimetr  Jeffs, “Polarimetry with Phased Array Antennas: Theoegtiramework

response away from the beam centers that should be corrected and Definitions,” IEEE Transactions on Antennas and Propagation
vol. 60, no. 1, pp. 184-196, Jan. 2012.

for in_ the image processing. The Sim_UIationS _Suggest theat t[I:ﬂO] B. Veidt et al, “Demonstration of a Dual-Polarized Phased-Array Feed,”
IXR is at least 25 dB over the entire FoV, indicating that IEEE Transactions on Antennas and Propagatiool. 59, no. 6, pp.

reconstruction of the polarimetric state of the incidenveva 2047-2057, Jun. 2011.

. . . . .[11] J. E. Roy and L. Shafai, “Generalization of the Ludwidp8finition for
should be pOSSIble with at most 22% increase in the relat'(/e Linear Copolarization and Cross PolarizatiohZEE Transactions on

error in the reconstructed image parameters. Since this is Antennas and Propagatiowol. 49, no. 6, pp. 10061010, Jun. 2001.
considered acceptable, our analysis indicates that XPiesal [12] H. L. van TreesOptimum Array Processing New York, USA: John
L . . Wiley & Sons, Inc., 2002.
as |0V_V as 20 dB 'r_‘5|de the_ FoV are still acc_:eptable! Wh"fb&] T. D. Carozzi and G. Woan, “A Fundamental Figure of Méoit Radio
is an important design requirement for future instrumeikes | Polarimeters,IEEE Transactions on Antennas and Propagatienl. 59,
the SKA. no. 6, pp. 2058- 2065, Jun. 2011.
[14] J. P. Hamaker, “Understanding radio polarimetry - I¥eTfull-coherency
analog of scalar self-calibration: Self-alignment, dyimamange and

VII. ACKNOWLEDGMENT polarimetric fidelity,” Astronomy & Astrophysics Supplement Sernes
. ) 143, pp. 515-534, May 2000.
The authors would like to thank Jaap Bregman, Wim vgms] —, “Understanding radio polarimetry - V. Making mariself-

Cappellen, Johan Hamaker and Taylor Webb for their useful calibration work: processing of a simulated observatigkgtronomy &

¢ i . f thi d ol lupik Astrophysicsvol. 456, no. 1, pp. 395-404, Sep. 2006.
comments on earlier versions o IS paper an €g lupi ?.L\é] S. J. Wijnholds, W. van Cappellen, and M. V. Ivashinageffermance

for his help in building the simulation required to simulate Assessment of Bi-scalar Beamformers in Practical Phaseay/feed
phased array feed system. Systems,” inProceedings of the XXXth General Assembly and Scientific
Symposium of the Internation Union of Radio Science (URSEHA
Istanbul, Turkey, 13-20 Aug. 2011.
APPENDIX [17] R. Maaskant, “Analysis of large antenna systems,” PliBsertation,
Eindhoven University of Technology, Eindhoven, The Neltosis,
The condition number of a Jones matixcan be computed 2010.

as [18] M. V. Ivashina, O. lupikov, R. Maaskant, W. A. van Cagpel and
It 1/2 T. Oosterloo, “An Optimal Beamforming Strategy for Wideske Sur-
J) = Omax (J ) o Amax (J J ) 43 veys With Phased-Array-Fed Reflector Antenn#SEE Transactions on
H( ) - . - . H ? ( ) Antennas and Propagatiowol. 59, no. 6, pp. 1864-1875, Jun. 2011.
Omin (J) )\mln (J J)

where o (J) denotes the singular value & indicated by
the subscript and\ (J¥J) denotes the eigenvalue df’J
indicated by the subscript. Using.;; as given by (37) and

solving for the characteristic polynomial, we find
Stefan J. Wijnholds (S06-M10-SM’'12) was born

Amax = cos? (¢/2) and Apip = gin? (¢/2) , (44) in The Netherlands in 1978. He received the M.Sc.
degree in astronomy and the M.Eng. degree in ap-
such that plied physics (both cum laude) from the University
cos (¢/2) of Groningen, The Netherlands, in 2003, and the
K (Jeig) = —F—==- (45) Ph.D. degree (cum laude) from Delft University of
sin (¢/2) Technology, Delft, The Netherlands, in 2010.

After his graduation in 2003, he joined the R&D
Department, ASTRON, the Netherlands Institute
for Radio Astronomy, Dwingeloo, The Netherlands,
where he works with the system design and integra-

tion group on the development of the next generation of reglescopes. From
REFERENCES 2006 to 2010, he was also affiliated with the Delft UniversifyTechnology,
Delft, The Netherlands. His research interests lie in treaaf array signal
processing, specifically calibration and imaging, andesystlesign of the next
generation of radio telescopes.

Dr. Wijnholds received travel grants for the URSI GASS 200&hicago
(), the Asia-Pacific Radio Science Conference in Toyadapan (2010)
and the URSI GASS 2011 in Istanbul, Turkey.

Substitution of this result in (16) and a little algebraicmima
ulation gives (40).

[1] H. A. Zebker and J. J. van Zyl, “Imaging Radar PolarimetyReview,”
Proceedings of the IEEEvol. 79, no. 11, pp. 1583-1606, Nov. 1991.

[2] R. Touzi and M. Shimada, “Polarimetric PALSAR Calibat|” IEEE
Transactions on Geoscience and Remote Sensiolg 47, no. 12, pp.
3951-3959, Dec. 2009.

[3] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W.zig “The
Square Kilometre Array,Proceedings of the IEEE/ol. 97, no. 8, pp.
1482-1496, Aug. 2009.



VERSION JUNE 1, 2012

Marianna V. Ivashina (M11) received a Ph.D.
in Electrical Engineering from the Sevastopol Na
tional Technical University (SNTU), Ukraine, in

Researcher and from 2004 till 2010 an Antenn
System Scientist at The Netherlands Institute fo
Radio Astronomy (ASTRON). During this period,
she carried out research on an innovative Phas
Array Feed (PAF) technology for a new-generatio

have led to the definition of APERTIF - a PAF system that is pelaveloped
at ASTRON to replace the current horn feeds in the WesterlSyrkthesis
Radio Telescope (WSRT). Dr. lvashina was involved in theetigyment
of APERTIF during 2008-2010 and acted as an external revieatethe
Preliminary Design Review of the Australian SKA Pathfind&iSKAP) in
2009. In 2002, she also stayed as a Visiting Scientist wighBthropean Space
Agency (ESA), ESTEC, in the Netherlands, where she studieltipiebeam
array feeds for the satellite telecommunication systemgéabeployable
Antenna (LDA).

Dr. Ivashina received the URSI Young Scientists Award fa @A URSI,
Toronto, Canada (1999), an APS/IEEE Travel Grant, Davositz8dand
(2000), the 2nd Best Paper Award (Best team contributionthat ESA
Antenna Workshop (2008) and the International Qualificatiellowship of
the VINNOVA - Marie Curie Actions Program (2009) and The VRoject
grant of the Swedish Research Center (2010). She is cwyrrentBenior
Scientist at the Department of Earth and Space Sciencesnf€saUniversity
of Technology). Her interests are wideband receiving arraptenna system
modeling techniques, receiver noise characterizatiognasi processing for
phased arrays, and radio astronomy.

Rob Maaskant (M'11) was born in the Netherlands

(cum laudé in 2003, and his Ph.D. degreeufn
laude in 2010, both in Electrical Engineering from
the Eindhoven University of Technology. His Ph.D.

2000. From 2001 to 2004 she was a Postdoctorg:

radio telescope, known as the Square Kilometer
Array (SKA). The results of these early PAF projects

11

Karl F. Warnick (SM’'04) received the B.S. degree
(magna cum laude with University Honors and
the Ph.D. degree from Brigham Young University
(BYU), Provo, UT, in 1994 and 1997, respectively.

From 1998 to 2000, he was a Postdoctoral Re-
search Associate and Visiting Assistant Professor
in the Center for Computational Electromagnetics
at the University of lllinois at Urbana-Champaign.
Since 2000, he has been a faculty member in the
Department of Electrical and Computer Engineering
at BYU, where he is currently a Professor. In 2005
and 2007, he was a Visiting Professor at the Technische t&itisce Miinchen,
Germany. Dr. Warnick has published many scientific artielad conference
papers on electromagnetic theory, numerical methods,teesgmsing, antenna
applications, phased arrays, biomedical devices, andsev&cattering, and is
the author of the bookBroblem Solving in Electromagnetics, Microwave Cir-
cuits, and Antenna Design for Communications Enginee¢gech House,
2006) with Peter Russeiumerical Analysis for Electromagnetic Integral
Equations(Artech House, 2008), andumerical Methods for Engineering: An
Introduction Using MATLAB and Computational Electromaiigee Examples
(Scitech, 2010).

Dr. Warnick was a recipient of the National Science Foumaatbraduate
Research Fellowship, Outstanding Faculty Member awardEfectrical and
Computer Engineering (2005), and the BYU Young Scholar An&007).
He has served the Antennas and Propagation Society as a memte
Education Committee and as a session chair and speciabsesganizer for
the International Symposium on Antennas and Propagatidrotiier meetings
affiliated with the Society. He is a frequent reviewer for lBEE Transactions
on Antennas and Propagation and Antennas and Wirelessdatipa L etters.
Dr. Warnick has been a member of the Technical Program Caeerfior the
International Symposium on Antennas and Propagation fegrabyears and
served as Technical Program Co-Chair for the Symposium @v¥20

on April, 14th, 1978. He received his M.Sc. degree

has been awarded 'the best dissertation of the Elec-
trical Engineering Department, 2010’. From 2003
2010 he was employed as an antenna research scien-
tist at the Netherlands Institute of Radio Astronomy
(ASTRON). He is currently a postdoctoral researcher
in the Antenna Group at the Chalmers University of
Technology, Sweden, for which he won a Rubicon postdoctfaiidwship
from the Netherlands Organization for Scientific ReseafdhVQ), 2010.

He received the 2nd best paper prize (‘best team contriftslitet the 2008
ESA/ESTEC workshop, Noordwijk, and was awarded a Young &eker
grant from the Swedish Research Council (VR), in 2011. Dragkant is the
primary author of the CAESAR software; an advanced integgaiation based
solver for the analysis of large antenna array systems. Hfiget research
interest is in the field of receiving antennas for low-noigpleations, meta-
material based waveguides, and computational electroetiagrto solve these
types of problems.




	IEEE_ref
	166336

