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Polarimetry with Phased Array Antennas:
Sensitivity and Polarimetric Performance Using

Unpolarized Sources for Calibration
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Karl F. WarnickSenior Member, IEEE

Abstract—Polarimetric phased arrays require a calibration
method that allows the system to measure the polarization state
of the received signals. In this paper, we assess the polarimetric
performance of two commonly used calibration methods that
exploit unpolarized calibration sources. The first method obtains
a polarimetrically calibrated beamforming solution from t he two
dominant eigenvectors of the measured signal covariance matrix.
We demonstrate that this method is sensitivity equivalent to the
theoretical optimal method, but suffers from an ambiguity that
has to be resolved by additional measurements on (partially) po-
larized sources or by exploiting the intrinsic polarimetric quality
of the antenna system. The easy-to-implement bi-scalar approach
assumes that the feed system consists of two sets of orthogonally
oriented antenna elements, each associated with one polarization.
We assess its sensitivity and polarimetric performance over a
wide field-of-view (FoV) using simulations of a phased array
feed system for the Westerbork Synthesis Radio Telescope. Our
results indicate that the sensitivity loss can be limited to4.5%
and that the polarimetric performance over the FoV is close
to the best achievable performance. The latter implies thatthe
intrinsic polarimetric quality of the antennas remains a crucial
factor despite the development of novel polarimetric calibration
methods.

Index Terms—phased array antennas, polarimetry, calibration,
beamforming, far-field radiation pattern

I. I NTRODUCTION

Polarimetric phased array antenna systems are commonly
used in imaging radar applications [1], [2], but are relatively
new in the field of radio astronomy. The radio astronomical
community is developing the Square Kilometre array (SKA)
[3], a future radio telescope that is envisaged to be an order
of magnitude more sensitive than present-day instruments.
Phased array antennas will play a crucial role either as aperture
array (AA) or as phased array feed (PAF) for reflector anten-
nas. Several precursor and pathfinder systems using phased ar-
ray antennas are currently in use or being developed. Examples
of such instruments are the Low Frequency Array (LOFAR,
AA) in Europe [4], the aperture tile-in-focus (APERTIF, PAF)

S.J. Wijnholds is with the Netherlands Institute for Radio Astronomy
(ASTRON), P.O. Box 2, NL-7990 AA, Dwingeloo, The Netherlands, Email:
wijnholds@astron.nl

M.V. Ivashina is with Chalmers University of Technology, SE-412 96
Gothenburg, Sweden and with the Netherlands Institute for Radio Astronomy
(ASTRON), Email: ivashina@chalmers.se

R. Maaskant is with Chalmers University of Technology, Email:
maaskant@chalmers.se

K.F. Warnick is with the Department of Electrical and Computer Engineer-
ing, Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA,
Email: warnick@ee.byu.edu

upgrade of the Westerbork Synthesis Radio Telescope in The
Netherlands [5], the Australian SKA Pathfinder (ASKAP, PAF)
in the Western Australian Desert [6] and the Long Wavelength
Array (LWA, AA) in the US [7].

The goals of these instruments for future radio astronomy
research require high system sensitivity for detecting weak
radio signals and accurate reconstruction of the polarization
state of these signals. A polarimetric antenna system, capable
of sampling the incident field by two orthogonally polarized
receptors, can fully reconstruct the polarization state ofthe
field. This reconstruction can be done by inverting a2 × 2
transfer matrix that relates the two output signals of the
receiver system to the polarization state of the field received by
the system [8]. In polarimetric systems, calibration should not
only compensate the gain differences between the receiving
elements to provide maximum sensitivity at the beamformer
outputs, but also ensure that the covariance between the two
beamformer output signals allows proper reconstruction ofthe
polarization state of the incident field. In a recent paper [9], the
authors have developed a system model and used it to relate the
astronomical performance criteria to standard IEEE definitions
for polarimetric antennas and to find a beamforming algorithm
that simultaneously optimizes for minimum system noise and
polarimetric accuracy. In this paper, we use this framework
to assess the polarimetric performance and sensitivity of two
commonly used calibration methods that exploit unpolarized
sources. This is particularly relevant, because the majority
of extragalactic radio sources with a continuum spectrum,
which are typically used for calibration of radio telescopes,
are weakly polarized or unpolarized and hence calibration
methods based on polarized reference sources are usually not
applicable.

A recently proposed method exploits the two dominant
eigenvectors of the signal covariance matrix measured on an
unpolarized source with a dual-polarized array [10], whichwe
will refer to as eigenvector method. This method may cause
a large unknown change of the orientation of the polarization
axes of the instrument, as we demonstrate in this paper, and is
therefore unsuitable for application in actual systems without
further polarimetric corrections. These polarimetric corrections
either require additional measurements on polarized sources or
relying on the intrinsic polarimetric quality of the system.

A second commonly used method exploits the fact that
feed systems usually consist of two sets of orthogonally
oriented antenna elements. For such systems, it is common
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Fig. 1. A radio polarimeter comprised of a dual-polarized actively beam-
formed receiving antenna array.

practice to calibrate the two sets independently and to apply a
single polarization correction at the end. This bi-scalar method
imposes additional constraints on the system design, including
manufacturing tolerances. We assess the stringency of these
constraints by comparison with the theoretically optimal per-
formance using theoretical analysis and simulations.

This paper is organized as follows. We start by introducing
the system model and performance metrics used to assess the
performance of the antenna system. In Sec. III we introduce
the calibration methods and discuss their theoretical perfor-
mance. We then introduce a simple analytic dipole model in
Sec. IV to demonstrate the impact of the unitary ambiguity in-
troduced when calibrating on an unpolarized source and show
how the polarimetric quality of the methods exploiting the
intrinsic polarimetric quality of the antenna system depends
on the orthogonality between the feed systems. In Sec. V,
we present simulations for an actual PAF system to assess
the impact of using a bi-scalar instead of a full-polarimetric
approach on the sensitivity and polarimetric performance over
the field-of-view (FoV). We show that the sensitivity loss can
be limited to 4.5% while the polarimetric performance over
the FoV is comparable to the best achievable performance.

II. T HEORY

A. System model

Figure 1 shows anN -element polarimetric phased array.
The antenna system is assumed to be illuminated by a partially
polarized source. The electric field intensity vector radiated by
such a source is

E (r, t) = Eu (r, t) û + Ev (r, t) v̂, (1)

where û and v̂ are orthogonal unit vectors according to
a certain specific Ludwig’s definition [11] relative to the
coordinate system of the array.

The antenna output signals are amplified to form theN -
element output voltage vectorv and are subsequently com-
bined into the beamformer output voltagesv1 and v2 using
the N × 1 beamformer weight vectorsw1 andw2.

At a fixed positionr, Eu (r, t) and Ev (r, t) are complex
random processes in the phasor or complex baseband repre-
sentation. The polarization state of the field is determinedby
the correlation matrix of the two field components, which is

Σ =

[
σuu σuv

σvu σvv

]
=





〈
|Eu|2

〉
〈EuE∗

v〉
〈E∗

uEv〉
〈
|Ev|2

〉



 , (2)

where 〈·〉 denotes the expected value. For an unpolarized
source, we haveΣ = I.

We will model the phased array antenna signal output
in terms of the voltage response vectors of the array,vu

and vv, containing voltages at the array receiver outputs
before beamforming induced by unit intensity, linearly po-
larized waves having their polarization aligned witĥu and
v̂ respectively. Theoretically, these voltages can be measured
using a reference source producing two signals with perfectly
orthogonal polarizations.

For an arbitrary polarized wave, the array signal voltage
response vector can be formulated in terms ofvu andvv as

vs = Euvu + Evvv. (3)

The array output signal covariance matrix is

Rs =
〈
vsv

H
s

〉
= VΣVH , (4)

where we have introducedV = [vu,vv]. Assuming that the
phased array system noise can be characterized by a noise
covariance matrixRn, the covariance matrix of the array
output voltagev can be described as

R =
〈
vvH

〉
= Rs + Rn = VΣVH + Rn. (5)

The noise covariance matrix can be determined using an off-
source measurement on an empty part of the sky, i.e., a part
of the sky without significant source structure. The noise
covariance matrix includes factors such as noise coupling and
spillover noise.

The beamformer output covariance matrix is obtained from
the beamformer output voltages,v1 = wH

1 v andv2 = wH
2 v,

by

Ro =

〈[
v1

v2

] [
v1

v2

]H
〉

=





〈
|v1|2

〉
〈v1v

∗

2〉
〈v∗1v2〉

〈
|v2|2

〉



 . (6)

In terms of the signal and noise covariance matrices introduced
earlier, this can be written as

Ro =

[
wH

1 Rw1 wH
1 Rw2

wH
2 Rw1 wH

2 Rw2

]

=
[

w1 w2

]H
R
[

w1 w2

]

= WH
(
VΣVH + Rn

)
W

= Ro,s + Ro,n, (7)

whereRo,s and Ro,n are the beamformer output covariance
matrices due to the signal and the noise, respectively.
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Fig. 2. A system level view of a radio polarimeter.

B. Useful concepts

1) Sensitivity equivalence:The combined sensitivity, ex-
pressed as the ratio of effective aperture areaAe and system
temperatureTsys, of the two beamformer outputs, the beam
pair sensitivity, is determined by a linear combination of the
two output signals. This can be obtained from [8]

Ae

Tsys

=
kbB

Ssig

SNR =
kbB

Ssig

aHWHRsWa

aHWHRnWa
, (8)

wherea = [a1, a2]
T is an arbitrary vector other than the null

vector, Ssig is the power flux density of the received signal
expresed in W/m2, kb is the Boltzmann constant andB is the
bandwidth.

As shown in [9], the beam pair sensitivity is bounded by

kbB

Ssig

λmin ≤ Ae

Tsys

≤ kbB

Ssig

λmax, (9)

whereλmin andλmax are the smallest and largest eigenvalue
of

C = VHW
(
WHRnW

)−1
WHV. (10)

By replacingW with W′ = WA whereA is an arbitrary
invertible2× 2 matrix, it is easily seen thatC is independent
of a linear transformation of the beam subspace and therefore
of the polarimetric calibration. We will refer to beam pairsthat
are related by such a transformation as sensitivity equivalent
beam pairs. This transformation signifies that all sensitivity
equivalent beam pairs lie within the same two dimensional
subspace of theN -dimensional space of complex valuedN -
element vectors. There are many possible rank two subspaces,
but only one that includes the maximum sensitivity beam-
former. Within each two dimensional subspace, there is one
unique beam pair that is polarimetrically calibrated.

Transformations applied after beamforming necessarily stay
within one two dimensional subspace. Sensitivity equivalence
implies that the beamformer weights can be described as
WJcor, whereJcor is a2×2 matrix describing a polarimetric
correction. If a beamformer can be formulated in this form, the
polarimetric correction can be done after beamforming without
affecting the sensitivity bounds of the beamformer given by
(9).

2) Jones matrices:In the noise free case or with noise
estimated and subtracted, (7) reduces to

Ro = WHVΣVHW = JΣJH , (11)

where we have introduced the2×2 Jones matrixJ = WHV.
This Jones matrix represents the transfer function of the in-
strument including antennas, receiver chains and beamforming
scheme, that transforms the two input voltages adhering to
a suitable polarimetric definition into two output voltages,
possibly adhering to another polarimetric definition. Figure 2

provides a system level view of the phased array antenna
system. The polarimetric properties of the source are defined
by the source covariance matrixΣ. This is transformed to
the beamformer output covariance matrixRo (equal toRo,s

in the noise free case), that is used for further processing
to produce a reconstructed source covariance matrixΣ′ that
should ideally be proportional toΣ. An ideal system does
not require polarimetric correction, since it hasJ = I, where
I denotes the identity matrix, i.e., it leaves the covariance
matrix of the input signal unchanged and does not introduce
so-called instrumental polarization. SinceJ = WHV, the
instrumental polarization introduced by the antennas and other
analog electronics can be compensated for in the beamformer.

3) Max-SNR beamforming:The highest signal-to-noise ra-
tio (SNR) for theu- andv-polarized signal is achieved by the
max-SNR beamformer [12]

WSNR = R−1
n V. (12)

Although this beamformer does not calibrate the polarimetric
response of the array, it does provide the maximum sensitivity.

4) Optimal beamforming:If we know the voltage response
vectors to two perfectly orthogonally polarized signals,vu

andvv, and the noise covariance matrix,Rn, we can derive
optimal weights for the beamformer that ensures minimization
of the noise in the measurement and perfect reconstruction of
the polarization properties of the source. This optimization can
be formulated as the constrained minimization problem

Wopt = argmin
W

tr
(
WHRnW

)
subject to WHV = I.

(13)
It can be shown that the solution to this optimization problem
is given by [9]

Wopt = R−1
n V

(
VHR−1

n V
)−1

. (14)

This pair of beamformer weight vectors minimizes the re-
sponse to the system noise while constrained to be polarimetri-
cally calibrated. We will refer to this calibration method as the
optimal method. The factor

(
VHR−1

n V
)
−1

can be interpreted
as a Jones matrix that applies a polarimetric correction to
the max-SNR beamformer weights. If the Jones matrix is
invertible, an assumption that should hold for polarimetric
arrays, the optimal beamformer is sensitivity equivalent to the
max-SNR beamformer. Hence, the optimal and the max-SNR
beamformer weigths span the same subspace and within this
subspace, the optimal beamformer picks the weight vectors
that provide the optimal polarimetric response. The same
response can be achieved with the max-SNR beamformer only
with an additional polarimetric correction after beamforming.

5) XPD and XPI:Following standard IEEE definitions, the
cross-polarization discrimination (XPD) and cross-polarization
isolation (XPI) can be expressed in terms of Jones matrix
elements as [13]

XPDu =
|J11|2

|J21|2
XPDv =

|J22|2

|J12|2
(15a)

XPIu =
|J11|2

|J12|2
XPIv =

|J22|2

|J21|2
. (15b)
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6) Intrinsic cross-polarization ratio: Since the goal of
polarimetric phased arrays is to reconstruct the polarimetric
properties of the source signal, preservation of these polari-
metric properties by the Jones matrixJ of the instrument need
not be a design goal by itself as long as the source coherency
can be reconstructed by a polarimetric correctionJ−1. This
idea led to the definition of the intrinsic cross-polarization ratio
(IXR). The IXR provides a measure for the reconstructability
of Σ (invertibility of J) and is defined as [13]

IXR =

(
κ (J) + 1

κ (J) − 1

)2

, (16)

whereκ (J) denotes the condition number ofJ.
The IXR provides an upper limit on the relative error in the

reconstructed Stokes vectorS that is given by [13]

‖∆Ss‖
‖Ss‖

/

(
1 +

4
√

IXR

1 + IXR
+ · · ·

)(‖∆M‖
‖M‖ +

‖∆So,s‖
‖So,s‖

)
,

(17)
where‖ · ‖ denotes the Euclidian norm,‖∆M‖ denotes the
calibration error in the Mueller matrix and‖∆S‖ denotes
the measurement error in the Stokes vector. Note that the
term involving the IXR describes an increase of the relative
Stokes error compared to a system with perfectly orthogonally
polarized feeds. For example, if the noise on the observation
causes a relative error (uncertainty) on the measured Stokes
vector of 1% and the relative error in the instrument model
(due to, e.g., calibration errors) is 1% as well, such a system
would have about 1.4% relative error in the reconstructed
Stokes vector. An IXR of 25 dB may (note that (17) gives
an upper bound) cause a 22% increase in this error, which
may therefore increase to 1.7%.

III. C ALIBRATION USING AN UNPOLARIZED SOURCE

The majority of continuum extragalactic sources, which
are typically used for calibration, are weakly polarized or
unpolarized. Calibration of radio telescopes therefore requires
methods that exploit unpolarized reference sources. In this
section, we discuss three proposed methods. We will see that
we cannot do a full polarimetric calibration of the system only
using an unpolarized source. Two of the proposed methods rely
on the intrinsic polarimetric characteristics of the instrument.

A. Eigenvector method

For a polarimetric array, neglecting estimation error, the
signal covariance matrixRs measured on an unpolarized
source has rank 2. If the system consists of two sets of orthogo-
nally polarized feeds, there is hardly any correlation between
the receiving elements in the two sets when measuring an
unpolarized source. Intuitively. the two dominant eigenvectors
will each be associated with one set of feeds. This naturally
suggests the use of the two principal eigenvectors,v1 andv2,
to form the maximum SNR eigenvector beamformer weight
vectors [10]

Weig = R−1
n Veig, (18)

whereVeig = [v1,v2]. We will refer to this approach as the
eigenvector method.

To compare this beamformer with the optimal solution
presented in the previous section, we note that the voltage
response vectorsvu andvv must span the same subspace as
the eigenvectorsv1 andv2. This implies that

V = VeigJeig, (19)

where the2×2 Jones matrixJeig describes the transformation
from v1 and v2 to vu andvv. The weights obtained by the
eigenvector method can thus be described as

Weig = R−1
n VJ−1

eig . (20)

Substitution in (14) gives

Wopt = R−1
n VeigJeig

(
VHR−1

n VeigJeig

)−1

= Weig

(
VHWeig

)−1
(21)

This shows that the two beamformers are sensitivity equiv-
alent. This implies that one beamformer can be transformed
into the other by an additional polarimetric correction after
beamforming.

Unfortunately, a single measurement on an unpolarized
source does not provide sufficient information for full polari-
metric calibration. This can be demonstrated by substitution
of (19) in (4) with Σ = I. This gives

Rs = VIVH = VeigJeigJ
H
eigV

H
eig. (22)

If we replaceJeig by J′

eig = JeigU, whereU is an arbitrary
unitary matrix, we get

Rs = VeigJ
′

eigJ
′H
eigV

H
eig

= VeigJeigUUHJH
eigV

H
eig

= VeigJeigJ
H
eigV

H
eig, (23)

i.e., we get exactly the same solution. This shows that our mea-
surement cannot discriminate betweenJeig and J′

eig, which
implies that the relation betweenV and Veig given by (19)
has a unitary ambiguity.

This polarimetric calibration problem has been studied in
detail by Hamaker [14]. He found that the physical signifi-
cance of the aforementioned unitary ambiguity is described
by polconversion and polrotation. Polconversion is the effect
that part of the unpolarized power is detected as (“converted
to”) polarized power. Polrotation refers to a rotation or axial
ratio change of the polarization ellips. This unitary ambiguity
can be resolved by additional measurements on two distinctly
polarized sources or by imposing additional constraints onthe
instrumental Jones matrix as discussed in [14], [15]. Relying
on the intrinsic polarimetric purity of the receiving elements
as discussed in the next sections is an example of such an
additional constraint. In Sec. IV, we demonstrate the impact
of ignoring this ambiguity using a simple dipole model.

B. Eigenvector method with bi-scalar approximate calibration

Since the eigenvector method produces a pair of beam-
former output signals that are only polarimetrically correct
up to a unitary matrix, we would like to find a correction to
ensure well-defined polarimetric characteristics at the beam-
former output. This can be achieved by assuming that the
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system consists of two sets of feeds that have an orthogonal
polarimetric response as proposed in [9]. For analysis of such
a system, it is convenient to partition the signal covariance
matrix as

Rs =

[
Rs,uu Rs,uv

Rs,vu Rs,vv

]
. (24)

The submatrices areN/2×N/2 matrices and we have assumed
that the first N/2 elements are optimally matched tou-
polarized signals while the secondN/2 elements are optimally
matched tov-polarized signals. The matrices

Rs,u =

[
Rs,uu 0

0 0

]
and Rs,v =

[
0 0

0 Rs,vv

]
, (25)

have rank one with principal eigenvectorsṽu and ṽv respec-
tively. These vectors can be used to find the approximate Jones
matrix

J̃ = WH
eigṼ, (26)

whereṼ = [ṽu, ṽv]. This Jones matrix can be used to calibrate
the beam pair to obtain

Wapprox = WeigJ̃
−H . (27)

Since ṽu and ṽv are only determined up to a scale factor,
further normalization may be required as discussed in [9].

C. Bi-scalar method

Most astronomical phased array systems consist of two sets
of feeds, each optimally matched to a single polarization. This
can be exploited by calibrating and beamforming both feed
sets separately, which simplifies the design of the system con-
siderably, since this approach requires two identical processing
systems that each have to deal with onlyN/2 signals, instead
of a single system withN inputs, thereby simplifying signal
routing and saving half the compute power for correlation of
the input signals. This is referred to as a bi-scalar approach.
Since this method treats both sets separately, it ignores the
cross-terms between the two sets of elements in the signal
and noise covariance matrices. For our analysis, it is therefore
convenient to partition these matrices as indicated in (24). We
can then formulate the bi-scalar beamformer as

Wbi−s =

[
R−1

n,uu 0

0 R−1
n,vv

]
[ṽu, ṽv] . (28)

If the two feed sets are perfectly matched tou- and v-
polarized signals respectively such thatRs,uv = Rs,vu = 0,
the bi-scalar approach gives the same result as the optimal
method or the eigenvector method and is therefore sensitivity
equivalent. Otherwise, the bi-scalar beamformer introduces a
beamforming error due to neglecting the cross-polarization
response of the elements. The impact on sensitivity depends
on the antenna responses. Using (9) we can determine the loss
in sensitivity for a specific antenna system.

A full polarimetric beamformer combines theu-polarized
power picked up as co-polarization in theu-elements and as
cross-polarization of thev-elements. The latter contribution
is ignored by a bi-scalar beamformer. To get a feel for the

implications of ignoring this term, we note that, in general,
the voltage output of the beamformer is given by

WHv =

[
wH

u,u wH
u,v

wH
v,u wH

v,v

]
v

=

([
wH

u,u 0

0 wH
v,v

]
+

[
0 wH

u,v

wH
v,u 0

])
v,

(29)

where wu,v denotes the weight vector assigned to theu-
polarized elements for the beamformer output associated with
v-polarized signals and similar definitions forwu,u, wv,u and
wv,v.

Since the weightswu,v need to be applied to theu-polarized
elements although they are associated withv-polarized signals,
we can exploit the ability of typical PAF systems to form a
cross-polarization beam for the signals from theu-polarized
elements and similarly for thev-polarized elements [16]. Once
both co- and cross-polarized beams are formed, we can add
the appropriate beam signals to reconstruct the output signals
of a full polarimetric beamformer. This approach doubles the
number of beams to be formed. Since the total bandwidth of
the beamformer (number of beams times the bandwidth per
beam) is limited by the digital hardware, we can only apply
this scheme by sacrificing half the bandwidth per beam to
allow for twice as many beams (the co- and cross-polarized
beams). This reduces the sensitivity for continuum sourcesby
a factor

√
2 and the survey speed by a factor 2. This may not

seem attractive, but some observations, such as interferometric
observations with other telescope systems, may not need the
full bandwidth of the system in which case this scheme may be
applied without its drawbacks. This is an important conclusion
for instruments with a bi-scalar design that can form multiple
beams within the FoV like APERTIF. However, calculation
of these weights requires knowledge of the full signal and
noise covariance matrices, which implies that these systems
still need to provide a facility that can correlate the signals
from any feed pair in the system for calibration of the array,
although, for example, with a reduced bandwidth.

IV. D IPOLE MODEL ANALYSIS

In this section, we present a simple dipole model and
use it to provide some insight in the impact of the unitary
ambiguity discussed in the previous section on the polarimetric
performance of the instrument. We also use this dipole model
to assess the impact of non-orthogonality in the polarimetric
response of the receiving elements for the methods that rely
on the intrinsic orthogonality of the feed sets.

A. Description of the dipole model

For this simple model, we assume that each antenna consists
of two co-located ideal dipoles in the(x, y)-plane making an
angle φ with each other. The open circuit responses of the
dipoles for broadside incidence are then proportional to

Voc ∝
[

1 0
γ cosφ γ sin φ

]
, (30)
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Fig. 3. Comparison between the elements ofVoc predicted by an EM-
simulation [17] of two crossed short dipoles and those givenby (30) assuming
γ = 1. The curve for the modeledV22 overlaps with the simulatedV22.

whereγ is the gain of the second dipole assuming that the
receive voltage of the first dipole is 1 V. The open circuit
signal covariance matrix for an unpolarized source is then
proportional to

Rs,oc = VocV
H
oc ∝

[
1 γ cosφ

γ cosφ γ2

]
. (31)

UsingRn,oc = 8kTRe{ZA}, whereZA denotes the antenna
impedance matrix, we find that, to first order,

Rn,oc ∝ 8kTRrad

[
1 γ cosφ

γ cosφ γ2

]
, (32)

where Rrad is the radiation resistance. In the loaded case,
we haveRs = QRs,ocQ

H and Rn = QRn,ocQ
H , where

Q = ZR (ZR + ZA)
−1 with ZR denoting the input impedance

of the receiving network. We need expressions for the imagi-
nary part of the antenna impedance matrix andZR to obtain
expressions forRs andRn, which will be more tedious than
the expressions for their open circuited counterparts given
above. For our educational example, we therefore choose to
use the open circuited case, i.e., to assume that the antenna
ports are connected to voltage amplifiers.

To verify this seemingly simple model, we did an EM-
simulation [17] with two crossed short dipoles making an
angleφ with length L = λ/4, width w = λ/640 and inter-
element distance∆z = 2w. Figure 3 compares the open
circuit voltages obtained from the EM-simulation with those
described by the analytical model while Fig. 4 makes a similar
comparison for the elements of the noise covariance matrix.
For convenience, we have assumed8kTRrad = 1 andγ = 1.
These results show that our analytical model is rather accurate,
especially for the crucial range whereφ is close to90◦. The
differences are primarily due to the finite strip width of the
numerical model.

B. Eigenvalue decomposition

For the analysis of the eigenvector method, we compute the
eigenvectors of the signal covariance matrix given by (31).
Since we are interested in the impact of non-orthogonality
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Fig. 4. Comparison between the elements ofRn,oc predicted by the EM-
simulation [17] of two crossed short dipoles and those givenby (32) assuming
γ = 1 and8kTRrad = 1. The results for the two off-axis elements and the
two on-axis elements ofRn,oc are identical, as expected from symmetry.

between the dipoles, we assume that the dipoles have the same
gain, i.e., thatγ = 1. Solving for the eigenvalues using the
characteristic polynomial, we find that

λ1,2 = 1 ± cosφ. (33)

We can now solve for the eigenvectors associated with each
eigenvalue. It is straightforward to show that forφ 6= π/2
mod π,

Veig =
1

2

√
2

[
1 1
1 −1

]
(34)

and thatVeig = I if φ = π/2 mod π. AlthoughVeig shows
a discontinuity atφ = π/2, we will see that the response
of the system remains continuous when using the eigenvector
method. Although this analysis was done for a single antenna
consisting of two crossed dipoles, it can easily be shown that
the results also hold for an array of identical antennas where
the coupling between antenna pairs is negligible. This implies
that the results obtained from the analysis of a single antenna
can also be applied to a full array.

C. Impact of the unitary ambiguity

In this section we will demonstrate the effect of the unitary
ambiguity by comparing the Jones matrix and beamformer
output signal covariance matrix for the optimal method and
the eigenvector method. It is straightforward to show that for
the optimal method

Jopt = WH
optV = I (35)

such that
Ro,s = JoptJ

H
opt = I. (36)

In a similar way, we can show that for the eigenvector method

Jeig = WH
eigV =

1√
2

[
1 1−cos φ

sin φ

1 − 1+cos φ
sin φ

]
., (37)

where we assumed a proportionality constant in (32) equal
to unity. It is interesting to note that substitutingφ = π/2
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in (37) gives the same result as obtained forVeig = I,
i.e., the discontinuity atφ = π/2 mod π found in the
eigenvalue decomposition vanishes when the result is applied
in the eigenvector beamforming scheme. Using (37) we find
that the beamformer output signal covariance matrix for the
eigenvector method is given by

Ro,s =

[
2 sin2 (φ/2) 0

0 2 cos2 (φ/2)

]
. (38)

Equation (37) shows that ifφ is close to90◦, i.e., if the
polarimetric responses of the dipoles are (almost) orthogonal,
the magnitudes of the entries of the Jones matrix are (almost)
equal. This indicates that the two input polarizations aligned
with û and v̂ are mixed to form two output signals that
are aligned with two other axes. However, if we look at the
beamformer output signal covariance matrix for an unpolarized
source, it seems that the system preserves the properties of
the source. This counter intuitive result can be explained by
the unitary ambiguity, which works on the Jones matrix, but
cancels itself in the beamformer output signal covariance ma-
trix, i.e., we have developed a beamforming scheme that gives
perfect results for unpolarized sources, but gives erroneous
results in observations on polarized sources.

It will also yield wrong results if the two beamformer output
signals are correlated to the two beamformer output signals
of another antenna system with a well-defined polarization.
This situation may occur in practice when multiple telescope
systems are linked together. Hence, it is important that the
voltage response of the system described by the Jones matrixis
well defined. This argument shows that the eigenvector method
is not suitable for use in an actual system unless appropriate
corrections are made to the beamformer output signals.

If we apply the bi-scalar approximate calibration discussed
in Sec. III-B to the dipole model, we find

Japprox = WH
approxV =

[
1 0

cos φ
sinφ 1

]
. (39)

This shows that if the dipoles are close to orthogonal, i.e.,
if φ ≈ 90◦, then Japprox ≈ I, which is close to the
desired response. This shows that the unitary ambiguity can
be resolved by the intrinsic properties of the system, but that
the accuracy of that correction depends on the orthogonality
in the polarimetric response of the two feeds.

D. Impact of non-orthogonality

In our next simulation, we look at the impact of non-
orthogonality between the dipoles by comparing the IXR as
defined in (16) of the beamformers for different inter-dipole
angles. SinceJ ∝ I for the optimal method, the IXR is infinite
for this method regardless of the orientation of the dipoles.
The IXR for the optimal method is therefore not shown in
Fig. 5. As derived in the appendix, the IXR for the eigenvector
method is conveniently described by

IXReig =

(
1 + tan (φ/2)

1 − tan (φ/2)

)2

. (40)

Comparison of the IXR for the bi-scalar method and for the
eigenvector method with and without bi-scalar approximate
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Fig. 5. IXR as function of the angle between the two dipoles for the
eigenvector method, the eigenvector method with bi-scalarcorrection and the
bi-scalar beamformer.

calibration shows that the eigenvector methods are not able
to produce a pair of beamformer output signals that is more
suitable for reconstruction of the polarimetric properties of the
input signal than the bi-scalar beamformer when the dipoles
are close to orthogonal. This indicates, that these methodsrely
on the polarimetric quality of the antenna system. An intuitive
explanation for this result, is that all these methods use an
unpolarized source for system calibration and thus have to
rely on the intrinsic polarization quality of the antenna system
to resolve the unitary ambiguity. Since most astronomical
calibration sources are not or only weakly polarized, this
implies that a well-designed antenna system is invaluable,even
given the material presented in this paper. An IXR of 25 dB
limits the potential increase in the relative Stokes error during
reconstruction to 22% as indicated by (17), which requires
φ ≥ 83.7◦.

Since the eigenvector method with bi-scalar correction is
sensitivity equivalent to the optimal beamformer and has the
same IXR as the bi-scalar beamformer, which has lower
sensitivity than the optimal method, it seems to be the best
method for calibration of a practical radio telescope system
on one of the available celestial calibration sources, which are
usually unpolarized.

It follows from (39) and the definitions given by (15a) and
(15b), that for the eigenvector method with bi-scalar correction

XPDu = tan2 φ XPDv = ∞
XPIu = ∞ XPIv = tan2 φ.

Similarly, we find for the bi-scalar beamformer that

XPDu =
1

cos2 φ sin2 φ
XPDv = ∞∀φ 6= 0

XPIu = ∞ XPIv = tan2 φ.

These results are asymmetric in the two polarizations, since we
defined our dipole model such that one dipole is aligned with
one of the polarization axes. Since rotation of the polarization
axes is described by a unitary matrix, such a rotation does
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Fig. 6. Arrangement of the 37 beams produced by the APERTIF system
over the FoV of the WSRT.

not affect the condition number of the Jones matrix making
the IXR insensitive to such a transformation. These results
indicate thatφ ≥ 83.7◦, required to achieve an IXR of 25 dB,
corresponds to an XPD of at least 19 dB.

V. B I-SCALAR BEAMFORMER PERFORMANCE

The bi-scalar approach is commonly applied in actual
phased array systems. However, in this paper, we have shown
that the bi-scalar beamformer is not sensitivity equivalent to
the optimal beamformer and that it relies on the intrinsic
polarimetric orthogonality of the feed system. We would there-
fore like to assess the sensitivity and polarimetric performance
of the bi-scalar beamformer in an actual system to see whether
it provides acceptable performance. For this assessment, we
use results from EM-simulations from the Aperture Tile-in-
Focus (APERTIF) project. The goal of this project is to
develop and build a PAF system for the Westerbork Synthesis
Radio Telescope (WSRT) located in The Netherlands to in-
crease its field-of-view (FoV) [5]. The APERTIF system will
be able to produce 37 beams on the sky that will probably be
arranged in a hexagonal pattern separated by about half power
beam width as indicated in Fig. 6.

A. Performance in the compound beam centers

The APERTIF system was simulated using a full-wave EM
package [18]. Figure 7 shows the average sensitivity of the
two beamformer outputs for the optimal beamformer and the
bi-scalar beamformer, while Fig. 8 shows the IXR of the bi-
scalar beamformer. All results were obtained for the beam
centers at 1.4 GHz. From these results, we conclude that use
of a bi-scalar beamformer leads to about 4.5% sensitivity loss
compared to the optimal beamformer and that the typical IXR
will be about 38 dB with a peak value of 59 dB for the central
compound beam. Note that the IXR in Fig. 8 is asymmetric
with respect to the central beam with index 19. This is caused
by the asymmetrical circular cavity terminating the tapered
slot which has been bended sideways to reduce the length
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Fig. 7. Average sensitivity of the two beamformer output signals for the
bi-scalar method and the optimal beamformer at the centers of the 37 beams
formed by the APERTIF system. The beam indices correspond tothe beam
numbers given in Fig. 6.
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Fig. 8. IXR of the bi-scalar beamformer at the centers of the 37 APERTIF
beams. The beam numbers correspond to the beam numbering shown in Fig. 6.

of the microstrip transmission line feeding the slot. Also,
the antenna elements are positioned diagonally over a square
ground plane which results in different element configurations
per polarization at the corners of the array.

These results are similar to those found for an earlier
APERTIF prototype system [16], [18]. Measurements done
with the APERTIF prototype system mounted on one of the
WSRT dishes confirmed the sensitivity loss, but also indicated
that the practicalities of an actual system reduce the ratio
of cross- to co-polarized power observed on an unpolarized
source to about 28 dB [16]. This was considered acceptable,
because the cross-polarization level can be improved by ap-
plying appropriate polarimetric corrections to the beamformer
output signals while the sensitivity loss can be recovered by
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forming cross- and co-polarized beams as discussed in Sec.
III-C.

B. Behavior over FoV

In the previous subsection, we assessed the performance
of the bi-scalar beamformer at the beam centers. Another
concern is the behavior of the PAF voltage beams over their
respective FoVs, since the image processing should correctfor
this response. Figure 9 therefore shows|J12| for the optimal
method and the bi-scalar method over the FoV at 1.42 GHz.
This shows that both beamformers suffer from the direction
dependent polarimetric response of the two feed systems, but
that the optimal beamformer does a better job at the beam
centers of the compound beams towards the edges of the
FoV. For the optimal beamformer, there is always a small
region around the beam center in which the instrumental
crosspolarization is less than -45 dB while the bi-scalar beam-
former produces some beams with -30 dB crosspolarization
in their field centers. This can be explained by the fact that
the bi-scalar beamformer relies on the intrinsic polarimetric
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Fig. 10. IXR (in dB) for all 37 beams produced by the APERTIF system.

orthogonality between the two sets of orthogonally oriented
antenna elements, which works very well in bore sight (the
central beam), but deteriorates towards the edges of the FoV.

The results shown in Fig. 9 indicate that an appropriate
correction for the polarimetric response of each PAF voltage
beam is required in the image processing to reconstruct the
polarimetric properties of the incident waves regardless of
the beamforming approach used. The reconstructability of the
polarization state of the received signals is measured by the
IXR, which is shown in Fig. 10 for the bi-scalar beamformer.
The simulations indicate that the inner 7 beams have an IXR
better than 40 dB over almost their entire beam area, while the
compound beams at the edges of the FoV still have an IXR
of at least 25 dB. This gives an upper limit on the increase
in the relative measurement error on the Stokes vector of 4%
and 22% for the central beams and for the edges of the FoV
respectively as predicted by (17). This should be sufficientto
allow accurate reconstruction of polarized signals with limited
sensitivity reduction due to image processing.

VI. CONCLUSIONS

In this paper we discussed the polarimetric and sensitivity
performance of calibration schemes that exploit an unpolar-
ized reference source. We demonstrated that the eigenvector
method is sensitivity equivalent to the optimal beamformer.
This implies that the eigenvector methods can exactly repro-
duce the result obtained from the optimal beamformer with an
additional polarimetric correction after beamforming.

We have demonstrated that the eigenvector method is not
suitable for use in an actual system without additional cor-
rection, because this method ignores the unitary ambiguity
intrinsic to calibration on an unpolarized source. This am-
biguity needs to be resolved either by imposing additional
constraints on the system response, such as relying on the
intrinsic polarimetric orthogonality between the feeds, or by
additional calibration observation on two distinctly polarized
sources.

The bi-scalar beamformer is not sensitivity equivalent to the
optimal beamformer and relies on the intrinsic polarimetric
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orthogonality of the feeds, but is easiest to implement in an
actual system. We demonstrated that the bi-scalar beamformer
can emulate the response of the optimal beamformer by form-
ing cross- and co-polarized beams at the cost of halving the
available beamforming bandwidth. We assessed the sensitivity
loss and polarimetric performance of the bi-scalar beamformer
using simulations for the APERTIF system, a PAF system
currently being designed for the Westerbork Synthesis Radio
Telescope. These simulations indicate that the sensitivity loss
is about 4.5% while the typical IXR in the beam centers is
about 38 dB. Since the bi-scalar beamformer relies on the
polarimetric orthogonality of the feeds, the gradient of this
orthogonality over the FoV causes variations in polarimetric
response away from the beam centers that should be corrected
for in the image processing. The simulations suggest that the
IXR is at least 25 dB over the entire FoV, indicating that
reconstruction of the polarimetric state of the incident wave
should be possible with at most 22% increase in the relative
error in the reconstructed image parameters. Since this is
considered acceptable, our analysis indicates that XPD values
as low as 20 dB inside the FoV are still acceptable, which
is an important design requirement for future instruments like
the SKA.
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APPENDIX

The condition number of a Jones matrixJ can be computed
as

κ (J) =
σmax (J)

σmin (J)
=

(
λmax

(
JHJ

)

λmin (JHJ)

)1/2

, (43)

where σ (J) denotes the singular value ofJ indicated by
the subscript andλ

(
JHJ

)
denotes the eigenvalue ofJHJ

indicated by the subscript. UsingJeig as given by (37) and
solving for the characteristic polynomial, we find

λmax = cos2 (φ/2) and λmin = sin2 (φ/2) , (44)

such that

κ (Jeig) =
cos (φ/2)

sin (φ/2)
. (45)

Substitution of this result in (16) and a little algebraic manip-
ulation gives (40).
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