Massive stars play a dominant role in the process of clustered star
formation, with their feedback into the molecular cloud through ionizing
radiation, stellar winds and outflows. The formation process of massive stars
is poorly constrained because of their scarcity, the short formation timescale
and obscuration. By obtaining a census of the newly formed stellar population,
the star formation history of the young cluster and the role of the massive
stars within it can be unraveled. We aim to reconstruct the formation history
of the young stellar population of the massive star-forming region RCW 36. We
study several dozens of individual objects, both photometrically and
spectroscopically, look for signs of multiple generations of young stars and
investigate the role of the massive stars in this process. We obtain a census
of the physical parameters and evolutionary status of the young stellar
population. Using a combination of near-infrared photometry and spectroscopy we
estimate ages and masses of individual objects. We identify the population of
embedded young stellar objects (YSO) by their infrared colors and emission line
spectra. RCW 36 harbors a stellar population of massive and intermediate-mass
stars located around the center of the cluster. Class 0/I and II sources are
found throughout the cluster. The central population has a median age of 1.1
+/- 0.6 Myr. Of the stars which could be classified, the most massive ones are
situated in the center of the cluster. The central cluster is surrounded by
filamentary cloud structures; within these, some embedded and accreting YSOs
are found. Our age determination is consistent with the filamentary structures
having been shaped by the ionizing radiation and stellar winds of the central
massive stars. The formation of a new generation of stars is ongoing, as
demonstrated by the presence of embedded protostellar clumps, and two exposed
jets.Comment: 18 pages, 10 figures, accepted for publication in Astronomy &
Astrophysic