354 research outputs found

    Analysis of the EMBRACE aperture array antenna by the characteristic Basis Function Method

    Get PDF
    This paper describes the use of the Characteristic Basis Function Method for the simulation of large phased array antennas for radio astronomy. It will be shown how the antenna effective area and the receiver noise temperature depend on array size. Also the receiving sensitivity Aeff /T sys normalised with respect to the physical area of the array will be shown for different array sizes and scan angles

    A truncated lipoglycan from mycobacteria with altered immunological properties

    Get PDF
    Maintenance of cell-wall integrity in Mycobacterium tuberculosis is essential and is the target of several antitubercular drugs. For example, ethambutol targets arabinogalactan and lipoarabinomannan (LAM) biosynthesis through the inhibition of several arabinofuranosyltransferases. Apart from their role in cell-wall integrity, mycobacterial LAMs also exhibit important immunomodulatory activities. Here we report the isolation and detailed structural characterization of a unique LAM molecule derived from Mycobacterium smegmatis deficient in the arabinofuranosyltransferase AftC (AftC-LAM). This mutant LAM expresses a severely truncated arabinan domain completely devoid of 3,5-Araf–branching residues, revealing an intrinsic involvement of AftC in the biosynthesis of LAM. Furthermore, we found that ethambutol efficiently inhibits biosynthesis of the AftC-LAM arabinan core, unambiguously demonstrating the involvement of the arabinofuranosyltransferase EmbC in early stages of LAM-arabinan biosynthesis. Finally, we demonstrate that AftC-LAM exhibits an enhanced proinflammatory activity, which is due to its ability to activate Toll-like receptor 2 (TLR2). Overall, our efforts further describe the mechanism of action of an important antitubercular drug, ethambutol, and demonstrate a role for specific arabinofuranosyltransferases in LAM biosynthesis. In addition, the availability of sufficient amounts of chemically defined wild-type and isogenic truncated LAMs paves the way for further investigations of the structure–function relationship of TLR2 activation by mycobacterial lipoglycans

    Sequential star formation in IRAS 06084-0611 (GGD 12-15): From intermediate-mass to high-mass stars

    Get PDF
    Context. The formation and early evolution of high- and intermediate-mass stars towards the main sequence involves the interplay of stars in a clustered and highly complex environment. To obtain a full census of this interaction, the Formation and Early evolution of Massive Stars (FEMS) collaboration studies a well-selected sample of 10 high-mass star-forming regions. Aims. In this study we examine the stellar content of the high-mass star-forming region centered on IRAS 06084-0611 in the Monoceros R2 cloud. Methods. Using the near-infrared H- and K-band spectra from the VLT/SINFONI instrument on the ESO Very Large Telescope (VLT)and photometric near-infrared NTT/SOFI, 2MASS and Spitzer/IRAC data, we were able to determine the spectral types for the most luminous stars in the cluster. Results. Two very young and reddened massive stars have been detected by SINFONI: a massive Young Stellar Object (YSO) con- sistent with an early-B spectral type and a Herbig Be star. Furthermore, stars of spectral type G and K are detected while still in the Pre-Main Sequence (PMS) phase. We derive additional properties such as temperatures, extinctions, radii and masses. We present a Hertzsprung-Russell diagram and find most objects having intermediate masses between \sim1.5-2.5 M\odot. For these stars we derive a median cluster age of \sim4 Myr. Conclusions. Using Spitzer/IRAC data we confirm earlier studies that the younger class 0/I objects are centrally located while the class II objects are spread out over a larger area, with rough scale size radii of \sim0.5 pc and \sim1.25 pc respectively. Moreover, the presence of a massive YSO, an ultracompact H ii region and highly reddened objects in the center of the cluster suggest a much younger age of < 1 Myr. A possible scenario for this observation would be sequential star formation along the line of sight; from a cluster of intermediate-mass to high-mass stars.Comment: 14 pages, 10 figures, 2 tables. Astronomy and Astrophysic

    Efficient Prediction of Array Element Patterns Using Physics-Based Expansions and a Single Far-Field Measurement

    Get PDF
    A method is proposed to predict the antenna array beam through employing a relatively small set of physics-based basis functions-called characteristic basis function patterns (CBFPs)-for modeling the embedded element patterns. The primary CBFP can be measured or extracted from numerical simulations, while additional (secondary) CBFPs are derived from the primary one. Furthermore, each numerically generated CBFP, which is typically simulated/measured for discrete directions only, can in turn be approximated by analytical basis functions with fixed expansion coefficients to evaluate the resulting array pattern at any angle through interpolation. This hierarchical basis reduces the number of unknown expansion coefficients significantly. Accordingly, the CBFP expansion coefficients can be determined through a single far-field measurement of only a few reference sources in the field of view. This is particularly important for multibeam array applications where only a limited number of reference sources are available for predicting the beam shape. Furthermore, this instantaneous beam calibration is fast, i.e., potentially capable to speed up the array calibration by one or two orders of magnitude, which is particularly important if the antenna radiation characteristics are subject to drifts

    Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    Get PDF
    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 micrometre up to 6 micrometre. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (10^-3 Msol/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of 2 micrometre found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.Comment: Accepted by A&

    Performance of polarimetric beamformers for phased array radio telescopes

    Get PDF
    The results of four recently introduced beamforming schemes for phased array systems are discussed, each of which is capable to provide high sensitivity and accurate polarimetric performance of array-based radio telescopes. Ideally, a radio polarimeter should recover the actual polarization state of the celestial source, and thus compensate for unwanted polarization degradation effects which are intrinsic to the instrument. In this paper, we compare the proposed beamforming schemes through an example of a practical phased array system (APERTIF prototype) and demonstrate that the optimal beamformer, the max-SLNR beamformer, the eigenvector beamformer, and the bi-scalar beamformer are sensitivity equivalent but lead to different polarization state solutions, some of which are sub-optimal

    Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions

    Get PDF
    For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation

    Polarimetry With Phased Array Antennas: Sensitivity and Polarimetric Performance Using Unpolarized Sources for Calibration

    Get PDF
    Polarimetric phased arrays require a calibration method that allows the system to measure the polarization state of the received signals. In this paper, we assess the polarimetric performance of two commonly used calibration methods that exploit unpolarized calibration sources. The first method obtains a polarimetrically calibrated beamforming solution from the two dominant eigenvectors of the measured signal covariance matrix. We demonstrate that this method is sensitivity equivalent to the theoretical optimal method, but suffers from an ambiguity that has to be resolved by additional measurements on (partially) polarized sources or by exploiting the intrinsic polarimetric quality of the antenna system. The easy-to-implement bi-scalar approach assumes that the feed system consists of two sets of orthogonally oriented antenna elements, each associated with one polarization. We assess its sensitivity and polarimetric performance over a wide field-of-view (FoV) using simulations of a phased array feed system for the Westerbork Synthesis Radio Telescope. Our results indicate that the sensitivity loss can be limited to 4.5% and that the polarimetric performance over the FoV is close to the best achievable performance. The latter implies that the intrinsic polarimetric quality of the antennas remains a crucial factor despite the development of novel polarimetric calibration methods
    • …
    corecore