13 research outputs found
Time-restricted feeding improves adaptation to chronically alternating light-dark cycles
Disturbance of the circadian clock has been associated with increased risk of cardio-metabolic disorders. Previous studies showed that optimal timing of food intake can improve metabolic health. We hypothesized that time-restricted feeding could be a strategy to minimize long term adverse metabolic health effects of shift work and jetlag. In this study, we exposed female FVB mice to weekly alternating light-dark cycles (i.e. 12 h shifts) combined with ad libitum feeding, dark phase feeding or feeding at a fixed clock time, in the original dark phase. In contrast to our expectations, long-term disturbance of the circadian clock had only modest effects on metabolic parameters. Mice fed at a fixed time showed a delayed adaptation compared to ad libitum fed animals, in terms of the similarity in 24 h rhythm of core body temperature, in weeks when food was only available in the light phase. This was accompanied by increased plasma triglyceride levels and decreased energy expenditure, indicating a less favorable metabolic state. On the other hand, dark phase feeding accelerated adaptation of core body temperature and activity rhythms, however, did not improve the metabolic state of animals compared to ad libitum feeding. Taken together, restricting food intake to the active dark phase enhanced adaptation to shifts in the light-dark schedule, without significantly affecting metabolic parameters
Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice
We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes
The GPR120 agonist TUGâ891 promotes metabolic health by stimulating mitochondrial respiration in brown fat
Brown adipose tissue (BAT) activation stimulates energy expenditure in human adults, which makes it an attractive target to combat obesity and related disorders. Recent studies demonstrated a role for G proteinâcoupled receptor 120 (GPR120) in BAT thermogenesis. Here, we investigated the therapeutic potential of GPR120 agonism and addressed GPR120âmediated signaling in BAT. We found that activation of GPR120 by the selective agonist TUGâ891 acutely increases fat oxidation and reduces body weight and fat mass in C57Bl/6J mice. These effects coincided with decreased brown adipocyte lipid content and increased nutrient uptake by BAT, confirming increased BAT activity. Consistent with these observations, GPR120 deficiency reduced expression of genes involved in nutrient handling in BAT. Stimulation of brown adipocytes in vitro with TUGâ891 acutely induced O2 consumption, through GPR120âdependent and GPR120âindependent mechanisms. TUGâ891 not only stimulated GPR120 signaling resulting in intracellular calcium release, mitochondrial depolarization, and mitochondrial fission, but also activated UCP1. Collectively, these data suggest that activation of brown adipocytes with the GPR120 agonist TUGâ891 is a promising strategy to increase lipid combustion and reduce obesity
Sexual Dimorphism in Transcriptional and Functional Glucocorticoid Effects on Mouse Skeletal Muscle
Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms
Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis
Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis
Loss of glucocorticoid rhythm induces an osteoporotic phenotype in female mice
Glucocorticoid (GC)-induced osteoporosis is a widespread health problem that is accompanied with increased fracture risk. Detrimental effects of anti-inflammatory GC therapy on bone have been ascribed to the excess in GC exposure, but it is unknown whether there is also a role for disruption of the endogenous GC rhythm that is inherent to GC therapy. To investigate this, we implanted female C57Bl/6J mice with slow-release corticosterone (CORT) pellets to blunt the rhythm in CORT levels without inducing hypercortisolism. Flattening of CORT rhythm reduced cortical and trabecular bone volume and thickness, whilst bone structure was maintained in mice injected with supraphysiologic CORT at the time of their endogenous GC peak. Mechanistically, mice with a flattened CORT rhythm showed disrupted circadian gene expression patterns in bone, along with changes in circulating bone turnover markers indicative of a negative balance in bone remodelling. Indeed, double calcein labelling of bone in vivo revealed a reduced bone formation in mice with a flattened CORT rhythm. Collectively, these perturbations in bone turnover and structure decreased bone strength and stiffness, as determined by mechanical testing. In conclusion, we demonstrate for the first time that flattening of the GC rhythm disrupts the circadian clock in bone and results in an osteoporotic phenotype in mice. Our findings indicate that at least part of the fracture risk associated with GC therapy may be the consequence of a disturbed GC rhythm, rather than excess GC exposure alone, and that a dampened GC rhythm may contribute to the age-related risk of osteoporosis
Androgens modulate glucocorticoid receptor activity in adipose tissue and liver
Diabetes mellitus: pathophysiological changes and therap
Liposomal Delivery Improves the Efficacy of Prednisolone to Attenuate Renal Inflammation in a Mouse Model of Acute Renal Allograft Rejection
Background.Systemic exposure to high-dose corticosteroids effectively combats acute rejection after kidney transplantation, but at the cost of substantial side effects. In this study, a murine acute renal allograft rejection model was used to investigate whether liposomal-encapsulated prednisolone (LP) facilitates local exposure to enhance its therapeutic effect.Methods.Male BalbC recipients received renal allografts from male C57BL/6J donors. Recipients were injected daily with 5 mg/kg cyclosporine A and received either 10 mg/kg prednisolone (P), or LP intravenously on day 0, 3, and 6, or no additional treatment. Functional magnetic resonance imaging (fMRI) was performed on day 6 to study allograft perfusion and organs were retrieved on day 7 for further analysis.Results.Staining of polyethylene-glycol-labeled liposomes and high performance liquid chromatography analysis revealed accumulation in the LP treated allograft. LP treatment induced the expression of glucocorticoid responsive gene Fkbp5 in the allograft. Flow-cytometry of allografts revealed liposome presence in CD45(+) cells, and reduced numbers of F4/80(+) macrophages, and CD3(+) T-lymphocytes upon LP treatment. Banff scoring showed reduced interstitial inflammation and tubulitis and fMRI analysis revealed improved allograft perfusion in LP versus NA mice.Conclusions.Liposomal delivery of prednisolone improved renal bio-availability, increased perfusion and reduced cellular infiltrate in the allograft, when compared with conventional prednisolone. Clinical studies should reveal if treatment with LP results in improved efficacy and reduced side effects in patients with renal allograft rejection.Diabetes mellitus: pathophysiological changes and therap
Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE*3-Leiden.CETP mice
Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6Â hours phase advances or delays, or weekly alternating light-dark cycles (12Â hours shifts), as a well-established model for shift work. We found that mice exposed to 15Â weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development