821 research outputs found

    Periostin Is Essential for the Integrity and Function of the Periodontal Ligament During Occlusal Loading in Mice

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141255/1/jper1480.pd

    Particle transport in turbulent square duct flows with a free surface

    Get PDF
    Direct numerical simulation combined with a one-way coupled Lagrangian particle tracking technique is employed to investigate dilute particle-laden turbulent flows in open square ducts with a free surface. The focus is on examining the influence of the mean cross-stream secondary flow on particle transport near the wall, free surface, and across the duct cross section. Based on the duct half-width and mean friction velocity, a shear Reynolds number of Reτ = 300 is considered, with the corresponding particle Stokes numbers ranging from St+ = 0.31 to 260. The results reveal that particle concentration near the sidewalls is lower than that near the bottom wall, and the minimum particle concentration is observed at the free surface. Along the bottom wall centerline orientated upward, particle concentration gradually decreases. An exception to this is in the vicinity of the free surface where a slight increase is observed for the heavier particles (St+ ≥ 25), and the amplitude of this increase gradually declines as the Stokes number increases. In the streamwise direction near the free surface, heavier particles tend to preferentially concentrate in regions where the instantaneous transverse secondary flow velocity is negative. As the Stokes number increases, the position of the maximum streamwise velocity for heavier particles is closer to the free surface, and the rotation centers of inner and outer secondary particle motions gradually disappear. The streamwise root mean square velocity for the lightest St+ = 0.31 particles is higher than that for particles with higher inertia in the middle region of the free surface

    Decay of Z into Two Light Higgs Bosons

    Get PDF
    If the standard electroweak gauge model is extended to include two or more Higgs doublets, there may be a neutral Higgs boson hh which is light (with a mass of say 10 GeV) but the hZZhZZ coupling is suppressed so that it has so far escaped experimental detection. However, the effective hhZZhhZZ coupling is generally unsuppressed, hence the decay of Z into two light Higgs bosons plus a fermion-antifermion pair may have an observable branching fraction, especially if hh decays invisibly as for example in the recently proposed doublet Majoron model.Comment: 10 pages, LaTex, figures available upon request to [email protected]

    The Ricci flow on noncommutative two-tori

    Get PDF
    In this paper we construct a version of Ricci flow for noncommutative 2-tori, based on a spectral formulation in terms of the eigenvalues and eigenfunction of the Laplacian and recent results on the Gauss-Bonnet theorem for noncommutative tori.Comment: 18 pages, LaTe

    Quintessence and Gravitational Waves

    Get PDF
    We investigate some aspects of quintessence models with a non-minimally coupled scalar field and in particular we show that it can behave as a component of matter with 3P/ρ0-3 \lesssim P/\rho \lesssim 0. We study the properties of gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic stress of the radiation and that their energy spectrum may help to distinguish between inverse power law potential and supergravity motivated potential. We finish by a discussion on the constraints arising from their density parameter \Omega_\GW.Comment: 21 pages, 18 figures, fianl version, accepted for publication in PR

    Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI)

    No full text
    We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of 41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain tissues demonstrated different values of this index. The greater the gestational age, the higher the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the level of neonatal brain development and increases the objectivity and reliability of clinical analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied in clinics.Досліджували результати візуалізації впливу силових імпульсів акустичного випромінювання (ARFI), вивчаючи головний мозок 41 новонародженого з різними термінами гестації. Ми використовували новий технічний індекс Virtual Touch Quantification (VTQ) для оцінки еластичних властивостей тканин мозку. У різних тканин мозку значення даного індексу були відмінними. Ми дійшли висновку, що методика ARFI дозволяє отримати новий кількісний показник для оцінки ступеню розвитку неонатального мозку; це збільшує об’єктивність та надійність клінічних аналізів. Метод є неінвазивним, безпечним, простим та зручним і може знайти широке застосування в клініці

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic

    Photoluminescence and cathodoluminescence of Eu:La2O3 nanoparticles synthesized by several methods

    Get PDF
    Abstract : Europium-doped La2O3 nanocrystalline powders with sizes ranging from 4 nm to 300 nm have been obtained by the modified Pechini, hydrothermal with conventional furnace, hydrothermal with microwave furnace, and precipitation with ultrasonic bath methods. X-ray diffraction techniques were used to study the evolution of the prepared gels towards the desired crystalline phase. We determined the size and the morphology of the nanoparticles by electronic microscopy. Finally, we studied and analyzed the luminescence properties of the trivalent europium in the hexagonal La2O3 nanocrystals by photoluminescence and cathodoluminescence

    How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs

    Full text link
    We intend to provide a comprehensive answer to the question on whether all Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we present a synthesis of the LASCO CME observations over the last sixteen years, assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic observations from STEREO and SDO, and statistics from a revised LASCO CME database. We argue that the bright loop often seen as the CME leading edge is the result of pileup at the boundary of the erupting flux rope irrespective of whether a cavity or, more generally, a 3-part CME can be identified. Based on our previous work on white light shock detection and supported by the MHD simulations, we identify a new type of morphology, the `two-front' morphology. It consists of a faint front followed by diffuse emission and the bright loop-like CME leading edge. We show that the faint front is caused by density compression at a wave (or possibly shock) front driven by the CME. We also present high-detailed multi-wavelength EUV observations that clarify the relative positioning of the prominence at the bottom of a coronal cavity with clear flux rope structure. Finally, we visually check the full LASCO CME database for flux rope structures. In the process, we classify the events into two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear structure). We find that at least 40% of the observed CMEs have clear flux rope structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a coherent magnetic, twist-carrying coronal structure with angular width of at least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a few minutes to several hours. We conclude that flux ropes are a common occurrence in CMEs and pose a challenge for future studies to identify CMEs that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue "Flux Rope Structure of CMEs

    Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering

    Full text link
    We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR
    corecore