25 research outputs found
Działalność towarzystwa gimnastycznego "Sokół” w Królestwie Polskim w latach 1905-1914
Tradycje ruchu sokolego na ziemiach polskich sięgają roku 1867. Wówczas powstało we
Lwowie pierwsze gniazdo Towarzystwa Gimnastycznego „Sokół”. W Królestwie Polskim i na
obszarze ziem polskich zaboru rosyjskiego, pierwsze gniazda Towarzystwa Gimnastycznego
„Sokół” powstały w latach 1905-1906.
Na obszarze Królestwa Polskiego gniazda „Sokoła” założono m. in. w Częstochowie, Łodzi,
Piotrkowie Trybunalskim, Radomiu, Warszawie oraz w Zagłębiu Dąbrowskim. Legalna
działalność „Sokoła” w Królestwie Polskim nie trwała długo. Władze carskie zawiesiły w dniu
4 września 1906 r. legalną działalność „Sokoła” na obszarze Królestwa Polskiego. „Sokół”
przeszedł do działalności konspiracyjnej (w okresie do 1914 r.).Традиція руху соколів на польській землі виникла в 1867 році. У той час перше
Гімнастичне товариство «Сокіл» було засноване у Львові. У Польському королівстві і
на теренах польських земель під російською анексією перші відділи Гімнастичного
товариства «Сокіл» були засновані у 1905-1906 роках.
На території Польського королівства відділи «Сокола» були засновані зокрема в
Ченстохові, Лодзі, Петркові-Трибунальському, Радомі, Варшаві і в Заглембі-Домбровському.
Легальна діяльність «Сокола» в Польському королівстві довго не тривала. 4 вересня
1906 року царська влада призупинила легальну діяльність «Сокола» на теренах Польського
королівства. «Сокіл» (в період до 1914 р.) перейшов на конспіративну діяльність.Традиция движения соколов на польской земле возникла в 1867 году. В то время первое
отделение Гимнастического общества «Сокол» было основано во Львове. В Польском
королевстве и на территории польских земель под русской аннексией, первые отделения
Гимнастического общества «Сокол» были основаны в 1905-1906 годах.
На территории Польского королевства гнѐзда «Сокола» были основаны в
частности в Ченстохове, Лодзи, Петркове-Трибунальском, Радоме, Варшаве и в
Заглембе-Домбровском. Законная деятельность «Сокола» в Польском королевстве
долго не длилась. 4 сентября 1906 года царские власти приостановили легальную
деятельность «Сокола» на территории Польского королевства. «Сокол» (в период до
1914 г.) перешѐл к конспиративной деятельности.The Traditions of “Sokół Movement” at the Polish lands come from 1867. At the time the first nest
of Gymnastic Society “Sokół” had come into existence. In the Polish Kingdom and in the Polish
territories ruled by Russia, first nests of Gymnastic Society “Sokół” emerged in 1905-1906.
In the Polish Kingdom, “Sokół” nests were established among others in Częstochowa, Łódź,
Piotrków Trybunalski, Radom, Warsaw and Dąbrowskie Zagłębie. The legalization of “Sokół” in
the Polish Kingdom began May 30, 1906. The tsarist authorities recognized a “Sokół” status.
The “Sokół” members in the Polish Kingdom strive for foundation of unitary “Sokół”
organization according to the “Sokół” during Austrian nad Prussian partition as a pattern. On
July 29, 1906 in Warsaw, the second meeting of the Polish Association of Gymnastic
Societies’s founders took place. The association consisted of six districts: District of
Czestochowa, Kalisz, Lubelskie, Łódz, Warsaw nad Dąbrowskie Zagłębie.
The legal activity of “Sokół” in Polish Kingdom did not last long. The tsarist authorities
suspended on September 2, 1906 legal activity of “Sokół” in the Polish Kingdom. “Sokół” moved
to the underground activity till 1914. Gymnastic Society “Sokół” in the Polish Kingdom operated
in the field of Physical Education, Cultural and Education, Independence and Publishing. In
1913 in the areas of Polish territories Ruled by Russia, 40 “Sokół” nests were operating. These
nests were affiliated into 3 districts and concentrated 6 000 members
Quasi-continuous Interpolation Scheme for Pathways between Distant Configurations
A quasi-continuous interpolation (QCI) scheme is introduced for characterizing physically realistic initial pathways from which to initiate transition state searches and construct kinetic transition networks. Applications are presented for peptides, proteins, and a morphological transformation in an atomic cluster. The first step in each case involves end point alignment, and we describe the use of a shortest augmenting path algorithm for optimizing permutational isomers. The QCI procedure then employs an interpolating potential, which preserves the covalent bonding framework for the biomolecules and includes repulsive terms between unconstrained atoms. This potential is used to identify an interpolating path by minimizing contributions from a connected set of images, including terms corresponding to minima in the interatomic distances between them. This procedure detects unphysical geometries in the line segments between images. The most difficult cases, where linear interpolation would involve chain crossings, are treated by growing the structure an atom at a time using the interpolating potential. To test the QCI procedure, we carry through a series of benchmark calculations where the initial interpolation is coupled to explicit transition state searches to produce complete pathways between specified local minima.This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/H042660/1]This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in the Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review. To access the final edited and published work see http://dx.doi.org/10.1021/ct300483
Empirical Maps For The Calculation of Amide I Vibrational Spectra of Proteins From Classical Molecular Dynamics Simulations
New sets of parameters (maps) for
calculating amide I vibrational
spectra for proteins through a vibrational exciton model are proposed.
The maps are calculated as a function of electric field and van der
Waals forces on the atoms of peptide bonds, taking into account the
full interaction between peptide bonds and the surrounding environment.
The maps are designed to be employed using data obtained from standard
all-atom molecular simulations without any additional constraints
on the system. Six proteins representing a wide range of sizes and
secondary structure complexity were chosen as a test set. Spectra
calculated for these proteins reproduce experimental data both qualitatively
and quantitatively. The proposed maps lead to spectra that capture
the weak second peak observed in proteins containing β-sheets,
allowing for clear distinction between α-helical and β-sheet
proteins. While the parametrization is specific to the CHARMM force
field, the methodology presented can be readily applied to any empirical
force field
Probing the Structure and Dynamics of Confined Water in AOT Reverse Micelles
Reverse
micelles are attractive nanoscale systems used for the confinement
of molecules in studies of structure and chemical reactions, including
protein folding, and aggregation. The simulation of reverse micelles,
in which a water “pool” is separated from a nonpolar
bulk phase by a surfactant layer, poses significant challenges to
empirical force fields due to the diversity of interactions between
nonpolar, polar, and charged groups. We have explored the dependence
of system density, reverse micelle structure, and water configurational
relaxation times as a function of reverse micelle composition, including
water:surfactant ratio, absolute number of water molecules, and force
field using molecular dynamics simulations. The resulting structures
and dynamics are found to depend more on the force field used than
on varying interpretations of the water:surfactant ratio in terms
of absolute size of the reverse micelle. Substantial deviations from
spherical reverse micelle geometries are observed in all unrestrained
simulations. Rotational anisotropy decay times and water residence
times show a strong dependence on force field and water model used,
but power-law relaxation in time is observed independent of the force
field. Our results suggest the need for further experimental study
of reverse micelles that can provide insight into the distribution
and dynamics of shape fluctuations in these complex systems
A Local Rigid Body Framework for Global Optimization of Biomolecules
We present a local rigid body framework for simulations of biomolecules. In this framework, arbritrary sets of atoms may be treated as rigid bodies. Such groupings reduce the number of degrees of freedom, which can result in a significant reduction of computational time. As benchmarks, we consider global optimization for the tryptophan zipper (trpzip 1, 1LE0; using the CHARMM force field) and chignolin (1UAO; using the AMBER force field). We use a basin-hopping algorithm to find the global minima and compute the mean first encounter time from random starting configurations with and without the local rigid body framework. Minimal groupings are used, where only peptide bonds, termini, and side chain rings are considered rigid. Finding the global minimum is 4.2 and 2.5 times faster, respectively, for trpzip 1 and chignolin, within the local rigid body framework. We further compare O(105) low-lying local minima to the fully relaxed unconstrained representation for trpzip 1 at different levels of rigidification. The resulting Pearson correlation coefficients, and thus the apparent intrinsic rigidity of the various groups, appear in the following order: side chain rings > termini > trigonal planar centers ≥ peptide bonds side chains. This approach is likely to be even more beneficial for structure prediction in larger biomolecules