
A Local Rigid Body Framework for Global

Optimization of Biomolecules

Halim Kusumaatmaja,∗ Chris S. Whittleston, and David J. Wales∗

University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge CB2

1EW, U. K.

E-mail: hk286@cam.ac.uk; djw34@cam.ac.uk

Abstract

We present a local rigid body framework for simulations of biomolecules. In this frame-

work, arbritrary sets of atoms may be treated as rigid bodies. Such groupings reduce the num-

ber of degrees of freedom, which can result in a significant reduction of computational time.

As benchmarks, we consider global optimization for the tryptophan zipper (trpzip 1, 1LE0;

using the CHARMM force field) and chignolin (1UAO; using the AMBER force field). We

use a basin-hopping algorithm to find the global minima and compute the mean first encounter

time from random starting configurations with and without the local rigid body framework.

Minimal groupings are used, where only peptide bonds, termini and side chain rings are con-

sidered rigid. Finding the global minimum is 4.2 and 2.5 times faster, respectively, for trpzip 1

and chignolin, within the local rigid body framework. We further compare O(105) low-lying

local minima to the fully relaxed unconstrained representation for trpzip 1 at different levels

of rigidification. The resulting Pearson correlation coefficients, and thus the apparent intrinsic

rigidity of the various groups, appear in the following order: side chain rings > termini > trig-

onal planar centres ≥ peptide bonds # side chains. This approach is likely to be even more

beneficial for structure prediction in larger biomolecules.
∗To whom correspondence should be addressed
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1 Introduction

Computer simulations have become an increasingly popular research tool in the quest to under-

stand biomolecules and soft matter. These systems often involve physical and chemical processes

that span multiple length and time scales, and exhibit very rich and interesting behaviour. Unfor-

tunately, the very same issue of multiple length and time scales also limits what we can simulate

in practice. To overcome this issue, various strategies have been developed. Advanced sampling

techniques, such as replica exchange,1 Wang-Landau,2 umbrella sampling,3 and metadynamics,4

make it possible to obtain thermodynamic information, which would otherwise be available only

from much longer simulations. Coarse-graining5–7 allows us to achieve longer length and time

scales by integrating out less relevant microscopic details. Significant effort has also been directed

towards multiscale modelling, where various parts of the computational domain are represented

at different resolution,8–10 or where large-scale cooperative motion is first explored, followed by

relaxation at an atomistic level.11,12

We describe here a local rigid body framework, where arbitrary sets of atoms may be grouped

as rigid bodies. This procedure reduces the number of degrees of freedom during simulations or

geometry optimization, thus providing a significant gain in computational efficiency. However,

in contrast to coarse-graining, the full atomistic representation is still accounted for in terms of

interactions between the locally rigid bodies.

The above framework can be employed for a wide variety of simulations, and here it will be dis-

cussed and implemented in the context of basin-hopping global optimization.13–16 Basin-hopping

has been succesfully applied for locating the global minima in a wide range of problems, including

atomic and molecular clusters, glass-formers, and biomolecules. As our interest turns to larger

systems, all-atom representations become prohibitively expensive after more than a few thousand

atoms. However, since in many cases groups of atoms move very little with respect to each other

(i.e. there is some intrinsic rigidity), or we are simply not interested in their displacements, local

rigidification becomes an attractive approach.

Naturally the gain in computational efficiency is closely related to the reduction in the num-
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ber of degrees of freedom, and hence the atoms one can group as rigid bodies. Such information

may be obtained from short runs with fully atomistic simulations by performing root mean-square

displacement or principal component analysis.17,18 There are also methods, such as the pebble

game,19 where graph theoretical techniques are employed to analyze bond networks and thus rigid-

ity in different parts of the molecules of interest. Alternatively, the local rigid body framework may

be applied recursively to larger and larger domains, and by comparing the potential energy land-

scape to its fully atomistic counterpart, we can establish a set of rules for what we can safely group

as rigid bodies without affecting the properties of interest significantly. In the present work, we

focus mainly on minimal rigid body groupings, where only peptide bonds, peptide termini and

side chain rings are considered rigid. We show that, even for this minimal scheme, a significant

speed-up is obtained in the mean first encounter time for finding the global minimum.

This paper is organized as follows. In the next section, we detail our simulation setup and

the implementation of the local rigid body framework. This account is then followed by the pre-

sentation of benchmark results for the tryptophan zipper (trpzip 1)20 and chignolin.21 We use a

CHARMM force field22,23 for the former peptide and an AMBER force field24,25 for the latter

to demonstrate that this approach can easily be implemented for different potentials. To justify

our rigid body groupings, we present a correlation analysis between the low-lying local minima

found in rigidified and unconstrained minimization at different levels of rigidification for trpzip 1.

Finally, we summarize the most important findings and discuss avenues for future research.

2 Methodology

The scheme in Fig. 1 summarizes the methodology, which is based upon basin-hopping global

optimization.13–16 In this approach, after a trial move is proposed, it is followed by an energy

minimization; the move is then accepted or rejected based upon the change in the corresponding

energy for the local minimum, V . A simple, yet quite effective, approach is to use a Metropolis

acceptance criterion: a step is accepted ifVnew <Vold, or ifVnew >Vold and exp{(Vold−Vnew)/kTbh}
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is larger than a random number drawn from the range [0,1]. Here we use Tbh = 750 K, which

corresponds to an energy of 1.5 kcal/mol. Since the energy is minimised after the proposed move,

the geometric perturbations proposed as steps can generally be much larger than the displacements

used in typical Monte Carlo sampling for thermodynamic properties. All the results presented

here were obtained using the GMIN program,26 which is available for use under the GNU public

license.

2.1 Trial moves

We have used two different types of trial move: dihedralmoves for the global optmization of trpzip

1 and group rotations for chignolin. Different trial moves, such as short molecular dynamics runs,

random displacements, or activated events27 either in Cartesian or internal coordinates, could also

be used and combined. For the dihedral moves, a number of backbone dihedral angles are selected

and twisted in the manner described in reference.28 To account for the effect of the dihedrals’

position along the chain, we choose a lower selection probability in the middle, Pmin = 0.2, than

at the end, Pmax = 0.4. We limit the maximum number of dihedral angles that can be shifted to

fifteen, and the amplitude of the dihedral twist is sampled randomly between 0 and π/6.

For the group rotation moves, we rotate groups of atoms as rigid bodies.29 The axis of rotation,

group members, selection probability, and maximum rotation amplitude of each group are all input

parameters. Here we apply group rotation moves to perturb the termini as well as the side chains of

the peptide. As a general rule, the bigger and bulkier the group, the smaller the selection probability

and amplitude of rotation employed. The detailed parameters we have used are included in the

supporting information, and examples will be available online from the GMIN web site.26

One other basin-hopping feature of GMIN that we have used in this paper is the newrestart

procedure. Here, we reseed the configuration from a short high temperature (Tnst) molecular dy-

namics run if the energy of the system has not decreased after a specified number of steps, Nnst.

This procedure allows the system to escape more easily from sets of minima that act as a trap. We

used Nnst = 5000 and Tnst = 1250K (2.5 kcal/mol) in the present work.
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2.2 Minimization step

In the local rigid body framework, there are two features that we would like to take advantage

of during the minimization step. First, we want to use widely available force fields, such as

CHARMM22,23 and AMBER,24,25 and as such, the energy and its first derivatives are calcu-

lated using the atomistic coordinates, {ri}, native to the force field. Second, we want to exploit

the reduction in the number of degrees of freedom as we group sets of atoms into rigid bodies,

{ri}i∈I → {rI,pI}. This reduction requires us to convert the atomistic coordinates of the molecule

into its rigid body coordinates, and vice versa, and to project the forces on the atoms to obtain the

corresponding forces and torques on the rigid bodies. In all cases, the energy minimization was

caried out using a slightly modified version of the limited-memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) algorithm.30,31

2.3 Local rigid bodies

Each rigid body has six degrees of freedom: three representing the position of the centre of ge-

ometry (translational degrees of freedom) {rI}, and three representing its orientation (rotational

degrees of freedom) {pI}. One may also use the centre of mass rather than the centre of geome-

try. For clarity, we employ capital letters for rigid bodies, and lower case for atoms. We will also

denote {r0i }i∈I as the reference coordinates of the atoms in rigid body I relative to the centre of

geometry. Unless specified otherwise, we use the atomic configuration at the global minimum for

{r0i }i∈I.

We use an angle-axis framework32,33 to represent the rotational degrees of freedom of the rigid

bodies. Here, pI = θI p̂I =
(
p1I , p2I , p3I

)
, where p̂I is a unit vector defining the rotation axis and θI

is the magnitude of the rotation about this axis. p1I , p2I , and p3I are the components of the rotation

vector in the x, y and z directions. Following Rodrigues’ rotation formula,34 the rotation matrix RI

can be expressed as

RI = I+(1− cosθI)p̃Ip̃I + sinθIp̃I , (1)
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where I is the identity matrix and p̃I is the skew-symmetric matrix obtained from the rotation

vector pI :

p̃I =
1
θI






0 −p3I p2I

p3I 0 −p1I

−p2I p1I 0






. (2)

Using this rotation matrix, the mapping from rigid body to atomistic coordinates can be per-

formed using the following formula:

ri∈I = rI +RI× r0i∈I. (3)

The reverse transformation from atomistic to rigid body coordinates may be performed in several

ways. Here we use the following procedure. The centre of geometry is given by

rI =
ni
∑
i∈I
ri/nI, (4)

where nI is the number of atoms in rigid body I. Now we need to choose at least two atoms within

each rigid body to construct three orthogonal unit vectors (ê1, ê2, ê3). Let us denote the positions of

these atoms relative to the centre of geometry as r1 and r2 in the rotated frame, and r01 and r02 in the

reference frame. The two vectors, i.e. r1 and r2 or r01 and r02, must not be parallel. This condition

implies that we need at least three non-collinear atoms in each rigid body. Three orthogonal unit

vectors can then be constructed as

ê1 = r1/|r1|,

ê2 = r1× r2/|r1× r2|, (5)

ê3 = ê1× ê2,

for the rotated frame, and similarly for
(
ê01, ê02, ê03

)
in the reference frame. Using the orthogonal
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vectors in the rotated and reference frames, we can compute the rotation matrix as

RI =






ê1x ê2x ê3x

ê1y ê2y ê3y

ê1z ê2z ê3z











ê01x ê02x ê03x

ê01y ê02y ê03y

ê01z ê02z ê03z






−1

. (6)

The conversion from rotation matrix to angle-axis coordinates is straightforward,34 and will not be

detailed here.

In addition to transformation of coordinates, the local rigid body framework requires the projec-

tion of forces (first derivatives) from individual atoms onto the translational and rotational degrees

of freedom of the rigid bodies. These projections are given by

∂U
∂ rkI

= ∑
i∈I

∂U
∂ rki

, (7)

∂U
∂ pkI

= ∑
i∈I
∇iU ·

(
RkI r0i

)
, (8)

where, following Eq. (3), we have used

∂ri
∂ pkI

= RkIr0i . (9)

2.4 The tryptophan zipper (trpzip 1)

The β -hairpin-forming peptide tryptophan zipper (trpzip 1, PDB: 1LE020) has 12 amino acid

residues; the global minimum energy configuration is illustrated in Fig. 2(a). Its sequence is SER -

TRP - THR - TRP - GLU - GLY - ASN - LYS - TRP - THR - TRP - LYS.We used the CHARMM19

force field and the EEF1 implicit solvent model35 for our global optimization analysis of this pep-

tide. We symmetrized the CHARMM force field so that the potential is invariant under feasible

permutations of identical atoms.36 The first and last residues were patched using the NTER and

CT2 options in CHARMM, respectively. This procedure is needed to adjust the connectivity of the
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terminal residues in the simulations, since they have one neighbor fewer than those in the centre.

For the EEF1 implicit solvent parameters, we set the temperature in the model to 298.15K. The

electrostatic energy is taken to be inversely proportional to the square of the atom-atom pair dis-

tance (group RDIE), and the following cutoff values were used: ctonnb 7.0, ctofnb 9.0, and cutnb

10.0.

There are in total 147 atoms (441 degrees of freedom) in the system. By grouping the termini,

peptide bonds, and tryptophan side chain rings as shown in Fig. 2(c), we can reduce the number of

degrees of freedom by 40% to 264 (17 rigid bodies and 54 ungrouped atoms).

2.5 Chignolin

Chignolin21,37 is a de novo peptide, which was designed to form a β -hairpin. It has ten amino

acid residues and its sequence is GLY - TYR - ASP - PRO - GLU - THR - GLY - THR - TRP

- GLY. While the reported PDB structures (PDB: 1UAO) are local minima for the AMBERff03

force field with a generalised Born implicit solvent model,38 we note that they do not correspond

to the global minimum configuration, and similarly for the AMBER99SB force field. The global

minimum structure is instead the one shown in Fig. 2(b) for the AMBERff03 force field, and it is

this minimum that we searched for in our global optimization runs.

We used the Onufriev-Bashford-Case (OBC) generalised Born implicit solvent model (igb =

2)38 with no periodic boundary condition. No cutoff was used for the nonbonded interactions by

setting cut = 999.99. The maximum distance between atom pairs considered for effective Born

radii calculations was set at 25.0 (rgbmax). We have also symmetrized the AMBER topology file

as described in reference,36 so that the potential is invariant with respect to feasible permutations

of identical atoms.

Out of 138 atoms (414 degrees of freedom) in chignolin, we grouped the peptide bonds, as

well as the tyrosine, proline and tryptophan side chain rings in our local rigid body framework.

The groups are shown in Fig. 2(c). This grouping reduces the number of degrees of freedom in the

system by 22% to 324 (11 rigid bodies and 86 ungrouped atoms).
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3 Mean first encounter time

To quantify the efficiency of our local rigid body framework, we compute the mean first encounter

time required to find the global minimum from random starting configurations. The starting con-

figurations were generated from high temperature molecular dynamics runs, each sampled over

100,000 steps with a time step of 2 fs at 750 K (1.5 kcal/mol). To provide a meaningful compari-

son, we use the same number of starting configurations for the local rigid body framework and for

the unrigidified search, i.e. 100 configurations for trpzip 1 and 50 configurations for chignolin.

While we would ideally like to use a larger number of starting configurations, we are limited by

the required computational time, especially for the unconstrained global optimizations. The first

encounter time distribution typically has a long tail, and this is precisely the reason why the local

rigid body framework was developed. Nonetheless, our experience with smaller systems suggests

that O(100) starting configurations provides a reasonable estimate for the mean first encounter

time.

Our choice for Tbh, Tnst, and Nnst was guided using the following procedure for trpzip 1. Using

ten starting configurations for each set, we ran 150,000 basin-hopping steps for Tbh = 500, 750,

and 1000 K, Tnst = 1000, 1250, and 1500 K, and Nnst = 5000, 10000, and 15000. We then chose

the parameters based on how many runs succeeded in finding the global minimum, and their corre-

sponding time averages. While the sample size is clearly too small for full parameter optimization,

our aim was simply to avoid particularly bad parameter values. We settled for Tbh = 750 K, Tnst =

1250 K, and Nnst = 5000, for both trpzip 1 and chignolin. The reported values therefore represent

upper bounds for the mean first encounter time with GMIN.

We present statistics of the first encounter time for the global minimum for trpzip 1 and chig-

nolin in Figs. 3 and 4, respectively. Panels (b) and (a) correspond to global optimization with and

without the local rigid body framework, respectively. The x axis corresponds to the number of

times the energy and gradient (function calls) were computed during the simulations. This mea-

sure is a more useful quantity to compare when different computer architectures and processors

are used. As an example, two billion energy and gradient calculations (our longest unrigidified
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calculation for trpzip 1) is equivalent to about 2000 CPU hours on an Opteron 280 processor with

a 2.4GHz clock speed.

Apart from the reduction in degrees of freedom during minimization, the rigidified and un-

rigidified simulations were run using identical parameters, including the geometrical perturbations.

The mean first encounter time for trpzip 1 is 108 (standard deviation σ = 0.9×108) and 4.2×108

(σ = 3.5×108) function calls with and without the local rigid body framework. The corresponding

mean first encounter time for chignolin is 0.7×108 (σ = 5.7×107) function calls with local rigid

body and 1.8×108 (σ = 1.4×108) function calls without the local rigid body framework. Thus,

we obtain an overall speed-up of 4.2 and 2.5 for trpzip 1 and chignolin, respectively.

The computational gain obtained using the local rigid body framework can be broken down

into three contributions.

• First, we do not have to compute pairwise interactions within a rigid body, since these terms

are effectively set to zero.39 This gain in efficiency scales as the square of the size of the

rigid body if there are no cutoffs. For minimal rigid body groupings, this contribution is

fairly small, but we expect it to become more important as we rigidify larger domains in

bigger systems, such as secondary structures (alpha helices, beta sheets).

• Second, the number of LBFGS steps required to find a local minimum after each perturbation

in geometry is reduced. Looking at our benchmark results for trpzip 1 (Fig. 3) and chignolin

(Fig. 4), the improvement is about 15− 20%. These results, as well as our preliminary

calculations for larger systems, suggest that we should expect savings in computer time to

scale with the reduction in the number of degrees of freedom.

• The third and last contribution is probably the most important one, and it comes from the

reduced number of basin-hopping steps required to find the global minimum. For trpzip 1,

global optimization using local rigid bodies is about four times faster, while for chignolin

the gain is approximately a factor of two. By rigidifying groups of atoms, our search space

is reduced. Local minima in which the relative configurations of atoms in group I differ
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from {r0i }i∈I are no longer accessible. We anticipate this third contribution to be the most

significant (perhaps by an order of magnitude or more) as larger systems are investigated.

4 Correlation analysis for the tryptophan zipper

In the previous section we have established that the local rigid body framework provides a consid-

erable reduction in computational time. To use this framework in practice, we need to address two

additional complementary issues: first, which groups of atoms can be rigidified; and second, which

reference coordinates {r0i }i∈I should be chosen for those atoms. Here we use a correlation anal-

ysis between 150,000 low-lying energy minima obtained from rigidified and unrigidified global

optimization to provide insight into these two issues.

Let us first consider the issue of local rigidity. We use a bottom-up approach where we rigid-

ify different groups of atoms separately and in combination, and show how these groupings affect

the energy correlation analysis. The correlation analysis may be performed in two different ways.

Scheme I. We start with the unconstrained minimum configurations, rigidify the atoms, and remi-

nimize the energy. Scheme II. Alternatively, we can start from the rigidified configurations, relax

the local rigidifications, and reminimize the energy. Results for both schemes are presented in

Fig. 5(a) and (b) when the tryptophan rings are rigidified for trpzip 1. In both cases, there is clearly

a strong correlation between the rigidified and unrigidified minima. The black line corresponds to

the case where the energies of rigidified and unrigidified minima are equal. To quantify the corre-

lation, we compute the Pearson correlation coefficients40 and the results are presented in Table 1.

In fact, we have performed this analysis for different levels of local rigidification: (i) tryptophan

rings, (ii) tryptophan rings and termini, (iii) tryptophan rings and peptide bonds, (iv) tryptophan

rings and trigonal planar centres, (v) tryptophan rings, termini and peptide bonds, (vi) tryptophan

rings, termini, trigonal planar centres and peptide bonds, and (vii) entire side chains.

Let us first concentrate on groupings (i) to (vi), where Scheme II produces high Pearson corre-
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Table 1: Pearson correlation coefficients for 150,000 low-lying minima obtained in rigidified and
unrigidified global optimization runs. The rigidified groups are: (i) tryptophan rings, (ii) trypto-
phan rings and termini, (iii) tryptophan rings and peptide bonds, (iv) tryptophan rings and trigonal
planar centres, (v) tryptophan rings, termini and peptide bonds, (vi) tryptophan rings, termini,
trigonal planar centres and peptide bonds, (vii) entire side chains.

Scheme I Scheme II
Rigid groups Atomic to rigid Rigid to Atomic

(i) 0.97 0.99
(ii) 0.95 0.98
(iii) 0.89 0.94
(iv) 0.91 0.97
(v) 0.92 0.96
(vi) 0.88 0.96
(vii) 0.33 0.92

lation coefficients. This result suggests that most, if not all, local minima found in rigidified global

optimization are also minima in the unrigidified search. This conclusion is further supported by

root mean square displacement (RMSD) analysis, which typically gives nearly vanishing RMSD

values. As expected, the energy of the system also decreases systematically as we relax the local

rigidifications in scheme II [see e.g. Fig. 5(b)].

Correlation scheme I provides the more stringent criterion. It gives a measure of the likelihood

that a local minimum in the unconstrained search is also a minimum for constrained optimization.

From Table 1, the Pearson correlation coefficients are high [though slightly lower than scheme II

for groupings (i) to (vi)]. For this reason, we judge them safe for local rigidifications. This analysis

justifies our choice of local rigid bodies presented in the previous section.

The last local rigidification grouping (side chains) is an interesting case, given that several

coarse-grained models represent an amino acid residue by a (coarse-grained) bead, see e.g.41 and

the references therein. We find that the Pearson correlation coefficient is rather low for scheme

I, where all-atom local minimum configurations are reoptimized upon local rigidification. The

energy comparisons are shown explicitly in Fig. 5(c), and the low coefficient clearly reflects the

broad scatter seen in the plot. Furthermore, while the resulting correlation coefficient is high for

scheme II, the data points show a clear and systematic energy gap from the black line, where the
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energies of rigidified and unrigidified optimizations would be equal. These two results suggest that

significant rearragements of atoms can occur as we reoptimize minima either upon rigidification or

relaxation of the rigid groups. We therefore conclude that this level of rigidification is too coarse

for the purpose of structure prediction in small peptides.

Finally, we briefly comment on the choice of the reference coordinates {r0i }i∈I. In the analysis

presented so far, we have simply used the atomic coordinates of the global minimum, but of course

we are most interested in the case where this configuration is unknown. We have therefore carried

out the same analysis presented in this section using several different reference minima, chosen

randomly from the 150,000 we have collected. Apart from the last rigidification scheme (vii - side

chains), the relative atomic configurations are, in fact, very similar from one minimum to another,

which is another measure of rigidity. As such, we find very similar Pearson correlation coefficients,

and the global minimum configuration survives, albeit with slightly different energies depending

on the choice of {r0i }i∈I. In each case the true global minimum is located with essentially the same

effciency.

5 Conclusions

In summary, we have presented and detailed the implementation of a local rigid body framework

for simulations of biomolecules. Using global optimization for the peptides trpzip 1 (12 amino

acid residues) and chignolin (10 amino acid residues), we have demonstrated that significant gains

in computational efficiency may be obtained. The largest contribution comes from the reduction

in the number of basin-hopping steps required to find the global minimum. Justification for local

rigidification may be obtained using a recursive energy correlation analysis, where larger and larger

domains are rigidified. We find that the correlation between the energy of the true local minima

and those obtained with constraints decreases in the following order: rings > termini > trigonal

planar centres ≥ peptide bonds# side chains.

There are a number of avenues of future research available using this local rigid body frame-
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work. Here we only mention two directions that we are currently pursuing. First is the application

to larger biomolecules containing hundreds of residues (thousands of atoms). For these systems,

all-atom global optimization becomes computationally expensive. The local rigid body framework

provides a systematic way to investigate these systems, focusing on deformation modes of inter-

est. Preliminary results for these larger systems indicate that a reduction in computational time by

an order of magnitude is possible. We are also attempting to visualize the change in the energy

landscape as larger and larger domains are rigidified. This analysis will not only be valuable for

the local rigid body framework, but it will also provide insight into alternative coarse-graining

schemes.
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Figure 1: Schematic diagram of the basin-hopping algorithm within a local rigid body framework.
Local rigidifications require mapping of atomistic positions and forces to their rigid body equiva-
lents.
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Figure 2: Global minimum configurations for (a) trpzip 1 and (b) chignolin. We also show the
rigidified groups of atoms for both peptides in (c). For trpzip 1, we group the termini, peptide
bonds, and tryptophan side chain rings, whereas for chignolin, we locally rigidify the peptide
bonds, as well as the tyrosine, proline and tryptophan side chain rings.
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Figure 3: Distribution of first encounter times required to locate the global minimum for trpzip 1:
(a) unconstrained global optimization, and (b) global optimization with local rigid bodies.
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Figure 4: Distribution of first encounter times for the global minimum of chignolin: (a) uncon-
strained global optimization, and (b) global optimization using local rigid bodies.
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Figure 5: Comparisons between the energies of local minima obtained using rigidified and unrigid-
ified global optimization. The left panels correspond to scheme I, and the right panels to scheme
II (see text for descriptions of schemes I and II). In (a) and (b), we rigidify tryptophan rings, while
in (c) and (d), we rigidify every side chain as a rigid body.
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