2,855 research outputs found

    Repression of the Glucocorticoid Receptor Aggravates Acute Ischemic Brain Injuries in Adult Mice.

    Get PDF
    Strokes are one of the leading causes of mortality and chronic morbidity in the world, yet with only limited successful interventions available at present. Our previous studies revealed the potential role of the glucocorticoid receptor (GR) in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). In the present study, we investigate the effect of GR knockdown on acute ischemic brain injuries in a model of focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO) in adult male CD1 mice. GR siRNAs and the negative control were administered via intracerebroventricular (i.c.v.) injection 48 h prior to MCAO. The cerebral infarction volume and neurobehavioral deficits were determined 48 h after MCAO. RT-qPCR was employed to assess the inflammation-related gene expression profiles in the brain before and after MCAO. Western Blotting was used to evaluate the expression levels of GR, the mineralocorticoid receptor (MR) and the brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling. The siRNAs treatment decreased GR, but not MR, protein expression, and significantly enhanced expression levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in the brain. Of interest, GR knockdown suppressed BDNF/TrkB signaling in adult mice brains. Importantly, GR siRNA pretreatment significantly increased the infarction size and exacerbated the neurobehavioral deficits induced by MCAO in comparison to the control group. Thus, the present study demonstrates the important role of GR in the regulation of the inflammatory responses and neurotrophic BDNF/TrkB signaling pathway in acute ischemic brain injuries in adult mice, revealing a new insight into the pathogenesis and therapeutic potential in acute ischemic strokes

    Dietary Lipoic Acid Influences Antioxidant Capability and Oxidative Status of Broilers

    Get PDF
    The effects of lipoic acid (LA) on the antioxidant status of broilers were investigated. Birds (1 day old) were randomly assigned to four groups and fed corn-soybean diets supplemented with 0, 100, 200, 300 mg/kg LA, respectively. The feeding program included a starter diet from 1 to 21 days of age and a grower diet from 22 to 42 days of age. Serum, liver and muscle samples were collected at 42 days of age. For antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum, liver and breast muscle significantly increased in chickens fed with LA. The concentration of malondiadehyde (MDA), an indicator of lipid peroxidation, was significantly lower in serum, liver and leg muscle in birds that received LA than in the control group. Treatments with LA significantly increased glutathione (GSH) content in liver and increased α-tocopherol content in leg muscle as compared to the control. These results indicate that dietary supplementation with 300 mg/kg LA may enhance antioxidant capability and depress oxidative stress in broilers

    Deep Neural Network for Robust Speech Recognition With Auxiliary Features From Laser-Doppler Vibrometer Sensor

    Get PDF
    Recently, the signal captured from a laser Doppler vibrometer (LDV) sensor been used to improve the noise robustness automatic speech recognition (ASR) systems by enhancing the acoustic signal prior to feature extraction. This study proposes another approach in which auxiliary features extracted from the LDV signal are used alongside conventional acoustic features to further improve ASR performance based on the use of a deep neural network (DNN) as the acoustic model. While this approach is promising, the best training data sets for ASR do not include LDV data in parallel with the acoustic signal. Thus, to leverage such existing large-scale speech databases, a regres- sion DNN is designed to map acoustic features to LDV features. This regression DNN is well trained from a limited size parallel signal data set, then used to form pseudo-LDV features from a massive speech data set for parallel training of an ASR system. Our experiments show that both the features from the limited scale LDV data set as well as the massive scale pseudo-LDV features are able to train an ASR system that significantly outperforms one using acoustic features alone, in both quiet and noisy environments

    Dibromido{2-[2-(piperidinium-1-yl)ethyl­imino­meth­yl]phenolato}zinc(II) monohydrate

    Get PDF
    The asymmetric unit of the title compound, [ZnBr2(C14H20N2O)]·H2O, consists of a mononuclear Schiff base zinc(II) complex mol­ecule and a solvent water mol­ecule. The ZnII atom is four-coordinated in an approximately tetra­hedral geometry, binding to the imine N and phenolate O atoms of the neutral zwitterionic Schiff base ligand and to two terminal Br− anions. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯Br and O—H⋯O hydrogen bonds, forming chains running along the b axis

    Heat Shock Protein 70 Protects the Heart from Ischemia/Reperfusion Injury through Inhibition of p38 MAPK Signaling.

    Get PDF
    BackgroundHeat shock protein 70 (Hsp70) has been shown to exert cardioprotection. Intracellular calcium ([Ca2+]i) overload induced by p38 mitogen-activated protein kinase (p38 MAPK) activation contributes to cardiac ischemia/reperfusion (I/R) injury. However, whether Hsp70 interacts with p38 MAPK signaling is unclear. Therefore, this study investigated the regulation of p38 MAPK by Hsp70 in I/R-induced cardiac injury.MethodsNeonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation for 6 h followed by 2 h reoxygenation (OGD/R), and rats underwent left anterior artery ligation for 30 min followed by 30 min of reperfusion. The p38 MAPK inhibitor (SB203580), Hsp70 inhibitor (Quercetin), and Hsp70 short hairpin RNA (shRNA) were used prior to OGD/R or I/R. Cell viability, lactate dehydrogenase (LDH) release, serum cardiac troponin I (cTnI), [Ca2+]i levels, cell apoptosis, myocardial infarct size, mRNA level of IL-1β and IL-6, and protein expression of Hsp70, phosphorylated p38 MAPK (p-p38 MAPK), sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2), phosphorylated signal transducer and activator of transcription3 (p-STAT3), and cleaved caspase3 were assessed.ResultsPretreatment with a p38 MAPK inhibitor, SB203580, significantly attenuated OGD/R-induced cell injury or I/R-induced myocardial injury, as evidenced by improved cell viability and lower LDH release, resulted in lower serum cTnI and myocardial infarct size, alleviation of [Ca2+]i overload and cell apoptosis, inhibition of IL-1β and IL-6, and modulation of protein expressions of p-p38 MAPK, SERCA2, p-STAT3, and cleaved-caspase3. Knockdown of Hsp70 by shRNA exacerbated OGD/R-induced cell injury, which was effectively abolished by SB203580. Moreover, inhibition of Hsp70 by quercetin enhanced I/R-induced myocardial injury, while SB203580 pretreatment reversed the harmful effects caused by quercetin.ConclusionsInhibition of Hsp70 aggravates [Ca2+]i overload, inflammation, and apoptosis through regulating p38 MAPK signaling during cardiac I/R injury, which may help provide novel insight into cardioprotective strategies
    corecore