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Abstract
Recently, the signal captured from a laser Doppler vibrometer
(LDV) sensor been used to improve the noise robustness auto-
matic speech recognition (ASR) systems by enhancing the a-
coustic signal prior to feature extraction. This study proposes
another approach in which auxiliary features extracted from the
LDV signal are used alongside conventional acoustic features
to further improve ASR performance based on the use of a deep
neural network (DNN) as the acoustic model. While this ap-
proach is promising, the best training data sets for ASR do not
include LDV data in parallel with the acoustic signal. Thus,
to leverage such existing large-scale speech databases, a regres-
sion DNN is designed to map acoustic features to LDV features.
This regression DNN is well trained from a limited size parallel
signal data set, then used to form pseudo-LDV features from a
massive speech data set for parallel training of an ASR system.
Our experiments show that both the features from the limited
scale LDV data set as well as the massive scale pseudo-LDV
features are able to train an ASR system that significantly out-
performs one using acoustic features alone, in both quiet and
noisy environments.
Index Terms: laser Doppler vibrometer, auxiliary features,
deep neural network, regression model, speech recognition

1. Introduction
Automatic speech recognition (ASR) has achieved tremendous
progress during last few decades, and currently performs very
well under clean conditions. However, modern recognition
systems suffer from severe performance degradation in the p-
resence of unavoidable interrupting factors like environmen-
t noise, room reverberation, disturbances from different mi-
crophones and recording non-linearities [1]. To solve these
problems, many processing techniques [2, 3, 4], including
speech enhancement algorithms [5] and new robust acoustic
features [6][7], have been developed to improve recognition
performance under low signal-to-noise ratio (SNR) condition-
s. However these existing approaches, while achieving some
improvements, are far from being a comprehensive solution.

Recently, the results of new approaches using auxiliary
information gathered from non-acoustic sensors like bone-,
throat- and air- microphones show that such sensors can supply
useful information to help ASR systems make correct decisions
under noisy environments [8][9][10]. Photo-acoustic technique
shows promising results on robust recognition due to their in-
herent immunity to acoustic noise as well as non-contact op-
eration [11][12]. Combining traditional acoustic features with

speech information captured by these sensors, recognition per-
formances are further improved [13]. According to [14][16], the
laser doppler vibrometer (LDV) sensor is a non-contact mea-
surement device that is capable of measuring the vibration fre-
quencies of moving targets. It is directed at a speaker’s lar-
ynx, and captures useful speech information at certain frequen-
cy bands. So far, LDV has been used to detect the remote voice
signal from surrounding vibrated objects [15]. And in [16][17],
LDV sensors are presented as making accurate and reliable
voice activity detection (VAD) decision, as well as improving
the speech recognition results.

Conventional hidden Markov model (HMM)-based speech
recognizers have been used in [17] with LDV data. Each a-
coustic state is modeled by Gaussian mixture models (GMMs),
referred to as a GMM-HMM system. However, recent studies
have shown that deep neural network (DNN)-based HMM sys-
tems (denoted as DNN-HMM) perform significantly better than
GMM-HMM systems on large vocabulary speech recognition
tasks [18][19]. DNNs, currently one of the most popular deep
learning methods, are joint models combining nonlinear feature
transformation and classification [20]. DNNs have demonstrat-
ed a great capacity to extract discriminative internal representa-
tions that are robust to the many sources of variability in speech
signals.

The novelty of this work is to derive LDV features from
LDV sensor information, combine these with the correspond-
ing traditional acoustic features to improve recognition perfor-
mance under both clean and noisy conditions. In comparison
to the recent work on LDV sensor for speech recognition [17],
the main difference is we directly use LDV features for acous-
tic modeling while in [17] LDV information is adopted to im-
prove the VAD and indirectly help to boost ASR system. In
this sense, our proposed approach can be perfectly incorporated
with [17]. Furthermore, we will show that using well-trained
DNN weights for initialization leads to even greater gains in
recognition performance. Due to the limited size of existing
LDV datasets, we additionally consider obtaining more LDV
features in training data by converting normal acoustical fea-
tures from a large dataset into pseudo-LDV features. To do this,
we first create and train a regression DNN to learn a mapping
relationship from normal acoustic features into LDV features.
The trained feature-mapping network allows pseudo-LDV fea-
tures to be generated in parallel with acoustic features from
acoustic-only training data, allowing us to create a very well
trained DNN-based dual feature ASR system.

The rest of the paper is organized as follows. Section 2
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describes the DNN acoustic system which combines acousti-
cal features with LDV features, then Section 3 demonstrates
the use of another DNN to derive pseudo-LDV features from
a large dataset. Section 4 introduces the experimental condi-
tions, datasets, system operation and discusses results. Finally
we conclude the paper in Section 5.

2. LDV Feature Combination
In this section, we exploit the availability of LDV features by
combining them with traditional acoustic speech features. Fig-
ure 1 shows a comparison of two different DNN based acoustic
systems. One uses normal acoustic features (we refer to this
as DNNN) while the other introduces LDV features to be con-
catenated with the acoustic features (we refer to this as DNNC).
Both will be evaluated later in Section 4.

Our LDV dataset (which will be described in detail in
Section 4.1), contains parallel acoustic microphone and cor-
responding LDV data files for each sentence. The traditional
approach is to obtain the log Mel-filter-bank (LMFB) features
from normal speech and feed these into the DNN input layer
with adjacent context frames. In our system we propose com-
bining the LMFB features from normal speech with LMFB fea-
tures extracted from the LDV signal. We ensure that each fea-
ture vector has the same dimension of n. Then we merge the
two features by concatenating them together into a dimension
of 2n. Here, to avoid poor local optima, pre-training methods
have been proposed to better initialize the parameters prior to
back propagation (BP). We use the contrastive divergence (CD)
criterion to train each pair of layers in the network as restricted
Boltzmann machines (RBM) and grow the network layer-by-
layer in an unsupervised way [19].

(a)

(b)

Figure 1: (a) DNNN is trained using traditional acoustic fea-
tures from normal speech, (b) DNNC is trained using a combi-
nation of traditional features and LDV features.

3. LDV Feature Generation and
Combination With a Large Dataset

While the incorporation of LDV features will be shown in Sec-
tion 4 to improve recognition performance, overall accuracy of
both DNNN and DNNC is restricted by the small size of the LD-
V database (i.e. the availability of data that contains parallel
recordings of acoustic speech and LDV signals) such that the
DNN-based ASR systems are not trained sufficiently well. We
therefore aim to make use of much larger datasets, and will test
this with acoustic-only ASR at first. In particular, we will use
a large scale dataset of acoustic recordings of common conver-

sations in moving vehicles gathered by the iFlytek company,
which we named the CZ speech corpus (from the initials of the
Mandarin phrase meaning ‘in car’), which has the same spoken
environment as the LDV dataset, although the style of conversa-
tions and content between the two datasets are totally different,
described in detail in Section 4.1.

Considering the mismatch between CZ and the LDV
datasets, instead of using RBM and CD algorithms to pre-train
the DNN acoustic model as normal, we first train an acoustic-
only DNN-based ASR system from the CZ database alone. This
provides a good initialisation start point, i.e. a well-trained
DNN. This DNN is then fine-tuned by using the acoustic-
only data from the LDV dataset (LDV-acoustic). The resulting
acoustic-only ASR system is named DNNLN and is shown in
Figure 2. We now extend this to acoustic + LDV feature AS-

Figure 2: Structure of pre-training the acoustic-only DNNLN

with a large dataset used for initialization.

R which combines LDV and acoustic features together. Since
the large CZ dataset only contains acoustic speech recordings,
we obtain corresponding pseudo-LDV features by first train-
ing a mapping network to learn the relationships between the
features from acoustic speech and the features from the LDV
signal. For mapping, we use a regression DNN, shown in Fig-
ure 3(a), learning the relationship between normal acoustic fea-
tures and LDV features. The training procedure of regression
DNN is similar to that in [21].

Once the DNN mapping network is ready, we can obtain
pseudo-LDV features by mapping from the normal acoustic fea-
tures extracted from the CZ dataset, which is shown in Figure
3(b). The mapping is only required during pre-training stage.
Then we merge these two features together and use them to
train a DNN model in the normal way. Once the pre-training
stage finished, the initialized model is transferred to the nex-
t stage for training. In the training stage, we use data from
the LDV dataset, which includes the LDV signal and acous-
tic speech recordings in parallel, hence the mapping network is
not required. In operation, the two types of features are merged
just like in the DNNC system described in Section 2. The re-
sulting DNN, referred to DNNLC (’L’ for large scale, ’C’ for
combined features), will be evaluated with the other systems in
the following section.

4. Experiments and Results
4.1. Corpus

In this paper we make use of two independent speech corpora:
the LDV dataset gathered by VocalZoom company ∗, which in-
cludes speech recordings captured by LDV sensors along with
corresponding acoustic recordings. The second database we
use comes from the iFlytek company research group †, which

∗http://vocalzoom.com
†http://www.iflytek.com
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Figure 3: (a) Training a DNN mapping network, (b) Training
DNNLC with a large dataset used for initialization and LDV
dataset used for fine tuning.

provides a large resource recordings of native English speakers.
This is used to pre-train the DNN acoustic models.

4.1.1. LDV dataset

The LDV dataset contains 13 thousand recordings in total at a
sample rate of 16 kHz with 16-bit accuracy. Speakers use main-
ly United States English and Hebrew to utter a selection of com-
mon sentences from daily life, such as “I see, that is a problem”.
Some human-to-machine style sentences are also included, es-
pecially in cars, such as “FM ninety five point three”. In prac-
tice, the LDV sensor is directed to a speaker’s throat region at a
certain distance and measures its vibration velocity, like vocal-
fold vibrations. During recording, besides capturing in a clean
environment, recordings were made where interfering acoustic
noise was present. In those recordings an undesired speaker
and background noises (from a moving vehicle) are present in
addition to the desired speaker. Measurements by the LDV and
acoustic sensors were recorded simultaneous. Detailed infor-
mation about the data recordings can be found in [16]. For
DNN training, the LDV corpus was partitioned into: training

set consisting of data from 54 speakers for a total duration of
9.9 hours; development set consisting of data from 4 speakers
for a total duration of 0.62 hours; testing set also consisting of
data from 4 speakers for a total duration of 0.75 hours.

4.1.2. Large CZ dataset

The CZ corpus contains more than 66 thousand recorded sen-
tences over a total duration of 620 hours, which is much larg-
er than the LDV dataset. This imbalance might make the a-
coustic DNN model largely influenced by the CZ dataset when
combing the two datasets. However, the CZ dataset has a bet-
ter coverage of pronunciations and speakers as a supplement to
the LDV dataset. Similarly, all files were also recorded at a
sampling rate of 16 kHz with 16-bit accuracy, which is matched
with the LDV data. Native speakers from USA (133 speaker-
s), Canada (78 speakers) and England (26 speakers) were asked
to speak some conversations in three common environments re-
lating to; cars, including some commands to machines, some
names and locations recorded in vehicles; tourism, including
shopping-related utterances, numbers and the names of famous
tourist attractions; daily communications involving education,
catering and health-care conversations. These were recorded
first into high-quality audio files, then replayed in three differ-
ent vehicles, namely Toyota, Volkswagen and BMW cars, in 5
different scenarios, shown in Table 1. The dataset is named CZ
after the initials of the phrase ‘in-car’ in Mandarin Chinese. The
‘Outside’ column details the environment that the car is parked
in or moving through, while the ‘AC’ column indicates whether
the air conditioner is operating, either on a medium setting or
turned off.

Table 1: Detailed information of 5 scenes used for recording
within the CZ corpus.

No. Car Speed Window Outside AC
1 stationary closed downtown middle
2 stationary open car park off
3 ≤ 40km/h closed downtown off
4 41− 60km/h closed countryside middle
5 80− 120km/h closed highway middle

4.2. Experimental settings

The features we use for both DNN regression and acoustic mod-
eling are 72-dimensional LMFB features (24-dimensional static
LMFB features with ∆ and ∆∆) and include an input context
of 10 neighbouring frames (±5) yielding a final dimensionality
of 792 (72× 11). Furthermore, when combined the two LMFB
feature vectors of normal speech and LDV speech, a merged a-
coustic feature vector is with dimensionality of 1584(72 × 2 ×
11).

To train the regression DNN, we use the 792-dimensional
LMFB features of normal speech as input to learn the targeting
LDV features with the same dimension. There are 2 hidden
layers with 2048 hidden units in each layer and a final linear
output layer, i.e. a structure of 792-2048-2048-792.

The DNN acoustic model uses a regular structure with 6
hidden layers having 2048 hidden units in each layer and a fi-
nal softmax output layer with 9004 units, corresponding to the
senones of the HMM system. For DNNN and DNNC system-
s, the networks were initialized using layer-by-layer generative
pre-training using 6, 5, 5, 5, 5, 5 iterations of the BP algorithm
in each layer. As for DNNLN and DNNLC, they were initial-



ized from a well trained DNN using the large scale CZ dataset
and combined LMFB features of two signals respectively. In
all experiments, the decoding is performed by using a 3-gram
language model (LM) with a dictionary consisting of more than
240 thousand words of native English.

4.3. LDV feature combination

The recognition performance is evaluated by word error rate
(WER in %) and the sentence error rate(SER in %). Table 2 lists
a performance comparison of the two systems with or without
using the combined auxiliary features from the LDV sensors.
The only difference of DNNN and DNNC is the input feature
dimension, namely 72 versus 144 for one frame. Both the W-
ER and SER of feature combination DNNC system can be re-
duced by about 6% over the DNNN system using normal speech,
which verifies the effectiveness of the auxiliary LDV features.

Table 2: Results of LDV feature combination
System Feature dim SER WER
DNNN 72 89.71% 58.88%
DNNC 144 84.23% 52.42%

To further explore the effectiveness of using LDV informa-
tion in different environments, we test those two systems on two
subsets of utterances recorded in clean and noisy environments,
as shown in Table 3. From the results, we can make an observa-
tion that the auxiliary LDV features can improve the recognition
performances for both clean and noisy environments, with rel-
ative word error rate (WER) reductions of 11.5% and 12.5%,
respectively.

Table 3: Results of LDV feature combination in different envi-
ronment conditions

System Feature dim SER WER

DNNN
clean 72 89.64% 56.44%
noisy 72 93.43% 71.96%

DNNC
clean 144 81.07% 49.96%
noisy 144 88.89% 62.93%

All the above results indicate that the LDV signal can pro-
vide more useful discriminative information in addition to the
normal speech, which can boost the ASR system in all environ-
ments.

4.4. LDV feature combination with a large dataset

The results of the systems initialized by the large CZ dataset
are shown in Table 4. With more training data, the DNNLN

system using acoustic-only features significantly outperform-
s DNNN system in Table 2, with the WERs from 58.88% to
32.93%. The DNN systems initialized from the large CZ dataset
in the pre-training stage always perform better, irrespective of
whether the LDV features are used. Moreover, by the compar-
ison of DNNLN with DNNLC, the use of LDV features achieves
a relative WER reduction of 20.6%, which is even more signifi-
cant than that under the smaller LDV dataset with all real LDV
features in Table 2. This implies that the LDV features are po-
tentially more powerful with larger training data even with the
pseudo-LDV features generated from the regression DNN with
the relationship learned on a small stereo data set of both the
normal speech and LDV data.

The system in Table 4, denoted as joint-DNNLC, is a mod-
ified version of DNNLC where the training data used for DNN

Table 4: Results of the systems with the large CZ dataset for
DNN initialization.

System Feature dim WER
DNNLN 72 32.93%
DNNLC 144 26.13%

joint-DNNLC 144 25.22%

initialization in the pre-training stage includes both the LDV
and CZ datasets. A remarkable performance gain is achieved
by joint-DNNLC over DNNLC, which indicates that more diver-
sified data in the pre-training stage is always helpful. However,
this gain is not significant as the proportion of LDV dataset is
too small compared with the large CZ dataset.

Finally, to give the reader a better understanding of the d-
ifferences between the LDV and CZ datasets, two more ex-
periments are designed. First, if the test set of LDV-acoustic
data is directly evaluated by the pre-trained model using CZ
dataset as in Figure 2, the recognition performance is extremely
poor, which confirms that those two datasets are quite different
in speaker styles, speech contents, etc. Second, when the pre-
trained model of joint-DNNLC system is adopted for testing, W-
ER is 37.04%, which performs much better than DNNC with
the WER of 52.42%. From the two experiments, we can make
an interesting observation that the recognition performance is
not satisfactory when the model is trained on each dataset (LD-
V or CZ) separately while the model trained with two datasets
merged can yield a very significant improvement of recognition
accuracy, which implies the two datasets are strongly comple-
mentary in terms of the coverage of speaker styles and speech
contents.

5. Conclusions
In this paper, we have investigated the use of auxiliary infor-
mation derived from an LDV sensor for improving ASR perfor-
mance. Due to the properties of LDV data which make it im-
mune to acoustic interference, we combine LDV features with
normal acoustic speech features to train a DNN acoustic model.
Experimental results show significant improvements of recog-
nition accuracy under both clean and noisy conditions. Fur-
thermore, after pre-training the DNN model with pseudo-LDV
features combined with acoustic features extracted from a large
data set, ASR system achieves much better performance than
that trained with smaller LDV datasets alone.

The good performances showed above promise the LDV
sensor a bright future with much protential applications. Com-
pany like VocalZoom has already deliverd some solutions in-
cluding Voice-Controlled Driver Assistance, Voice-Controlled
Smartglasses and even Voice Authentication for personal secu-
rities. We also note that researchers are on the way aiming to
develop a much smaller and more convenient laser-based sen-
sor, which can make it get rid of the inconvenience of heavy
equipments and will be more suitable for practical use.
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