173 research outputs found

    Large Distance Modification of Newtonian Potential and Structure Formation in Universe

    Full text link
    In this paper, we study the effects of super-light brane world perturbative modes on structure formation in our universe. As these modes modify the large distance behavior of Newtonian potential, they effect the clustering of a system of galaxies. So, we explicitly calculate the clustering of galaxies interacting through such a modified Newtonian potential. We use a suitable approximation for analyzing this system of galaxies, and discuss the validity of such approximations. We observe that such corrections also modify the virial theorem for such a system of galaxies.Comment: 13 pages, 3 captioned figure

    Ant Colony Optimization Algorithm to Dynamic Energy Management in Cloud Data Center

    Get PDF
    With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated. Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS Management Module, Load Balancing Module, and Task Scheduling Module. According to Task Scheduling Module, the scheduling process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO) is proposed, which optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting performance constraints

    Adaptability evaluation of pavement structure to replacement treatment subgrade of black cotton soil

    Get PDF
    Aiming at the typical engineering problem of black cotton soil (BCS) subgrade under the alternation of dry and wet climate in the region of Nairobi, Kenya, this paper takes the pavement structure as the research object, and the numerical calculation model of BCS subgrade is established based on the consolidation coupling theory of unsaturated soil. Taking the modulus and thickness of the subbase as variables, the deformation characteristics and additional stresses of different pavement structures are analysed. Then the adaptability of different pavement structures to replacement treatment subgrade of BCS is evaluated by gray incidence decision analysis method. The results show that whatever the pavement structure is, neither subgrade modulus nor thickness is sensitive to the pavement surface deformation, and the deformation differences between each pavement structure are more obvious in wet season; the additional stress at control layer bottom and pavement surface decreases with the increase of subbase modulus, whereas the stress may increase at subbase bottom; the additional stress at subbase bottom, control layer bottom and pavement surface all decreases with the increase of subbase thickness for pavement Structure I and II. For pavement Structure III, the change of subbase thickness is not sensitive to the additional stress at the control layer bottom and pavement surface, whereas the stress at subbase bottom increases with the increase of subbase thickness. It is concluded that the most adaptable structure is pavement Structure I, which can minimize the comprehensive level of pavement settlement and additional stress
    corecore