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With the wide deployment of cloud computing data centers, the problems of power consumption have become increasingly
prominent. The dynamic energy management problem in pursuit of energy-efficiency in cloud data centers is investigated.
Specifically, a dynamic energy management system model for cloud data centers is built, and this system is composed of DVS
ManagementModule, LoadBalancingModule, andTask SchedulingModule. According toTask SchedulingModule, the scheduling
process is analyzed by Stochastic Petri Net, and a task-oriented resource allocation method (LET-ACO) is proposed, which
optimizes the running time of the system and the energy consumption by scheduling tasks. Simulation studies confirm the
effectiveness of the proposed system model. And the simulation results also show that, compared to ACO, Min-Min, and RR
scheduling strategy, the proposed LET-ACO method can save up to 28%, 31%, and 40% energy consumption while meeting
performance constraints.

1. Introduction

Cloud computing is a new computing model which is
developed from grid computing. It includes a variety of tech-
nologies: virtualization, distributed computing, and green
energy-saving technology [1]. There are mainly three types
of forms to supply resources to customers: Infrastructure as
a Service, Platform as a Service, and Software as a Service. It
implies a service-oriented architecture, reducing information
technology overhead for the end-user, great flexibility, reduc-
ing total cost of ownership, and on-demand services [2].

With the era of big data coming, computing needs
have been expanding. A large number of future-generation
data centers will use virtualization technology and cloud
computing technology. With the expansion of the size of
cloud data centers, high energy consumption of data centers
becomes a serious problem. According to the relevant data,
around 2016, the data centers with more than 100 blade
chassis accounted for 60% of whole market of data centers
(https://sanwen8.cn/p/24d2OE0.html.). The large data cen-
ters consume vast quantities of power; for example, a data
center with 3000 blade chassis consumes 9000 kw per hour,
and electricity charges are close to 12 million dollars every

year. A lot of efforts have beenmade in the industry to reduce
the power need in current server platforms.Therefore, how to
manage the application in a cloud data center in an energy-
efficient way becomes an urgent problem.

Energy consumption optimization technology for distrib-
uted parallel computing system includes three types: resource
hibernation, dynamic voltage management technology, and
virtualization. Resource hibernation is mainly used to reduce
energy cost of idle machines, but it takes a long time to start.
Dynamic voltage scaling (DVS) is a power management
technique in computer architecture, where the voltage used
in a component is increased or decreased, depending upon
circumstances (https://en.wikipedia.org/wiki/Dynamic volt-
age scaling), but, with the decrease of voltage, processors’
performance will decline. Dynamic voltage and frequency
scaling (DVFS) changes the frequency and voltage of the
cores, scaling performance, and power simultaneously.

Virtualization can improve the efficiency of computers
and reduce costs and energy consumption. Through virtu-
alization technology, multiple tasks run on different virtual
machines, reducing energy consumption by increasing the
utilization of computer resources and reducing the number
of computers required.
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However, the above methods have their limitations:

(1) They do not consider scheduling problems to reduce
energy consumption.

(2) There are few integrated management strategies to
reduce power consumption.

(3) They are applicable to implemented systems or system
prototypes only.

Based on the above discussions, this paper tackles the
problem of dynamic energy management in data centers.
The contributions of our work to existing literature can be
summarized as follows:

(1) An integrated management strategy is developed to
solve the power consumption and the dynamic energy
management system model for cloud data centers is
built.

(2) A task-oriented resource allocation method (LET-
ACO) is proposed in order to adapt to the dynamic
and real-time situation and solve the issue of cloud
computing resource scheduling and decrease the
power consumption of data center.

2. Related Works

2.1. Optimization of Energy Consumption in Cloud Data
Center. A large number of data centers use virtualization
technology and cloud computing technology.The integration
of traditional power management technology and virtualiza-
tion technology provides new solutions to solve the power
management issue of cloud data center [3–5].

Operation and power management in virtualization are
major challenges in cloud platform. Firstly, the virtual
resources and physical resources managed by the virtual-
ization platform are separated from each other; therefore,
how to implement the energy management strategy of
application-level virtual machine is a challenging problem.
Cloud data center is a constantly changing platform; con-
sidering the requirements of isolation and independence of
virtual machines, the energy management strategy of virtual
machine should be flexible. Secondly, the energy consump-
tion of the virtual machine cannot be measured directly
from the hardware; most energy consumptionmodels are not
accurate.

Nathuji and Schwan proposed VirtualPower approach to
integrate power management mechanisms and policies with
the virtualization technologies [6]. This approach supports
the isolated and independent operation assumed by guest
virtual machines (VMs) running on virtualized platforms
and globally coordinates the effects of the diverse power
management policies applied by these VMs to virtualized
resources. Yang et al. used the open-source codes and PHP
web programming to implement a resource management
system with power-saving method for virtual machines in
[7]. They proposed a system integrated with open-source
software, such as KVM and Libvirt, to construct a virtual
cloud management platform.

High performance can be achieved in cloud computing
systems using appropriate energy management algorithms
in virtual cloud platform. Beloglazov and Buyya proposed
novel adaptive heuristics for dynamic consolidation of VMs
based on an analysis of historical data from the resource
usage by VMs in [8]. The proposed algorithms significantly
reduce energy consumption, while ensuring a high level of
adherence to the service level agreement. Escheikh et al.
proposed workload-aware power management (PM) per-
formability analysis of server-virtualized system (SVS) in
[9]. This modeling approach delivers a precise description
of different entities and features of the SVS and provides
effective support for dynamic time-based PMpolicy enabling
opportunistic selection of suitable power states of power
manageable component (PMC).

Dynamic voltage scaling is a power management tech-
nique in computer architecture, where the voltage used in a
component is increased or decreased, depending upon cir-
cumstances [10]. Rossi et al. proposed a novel dynamic volt-
age scaling (DVS) approach for reliable and energy efficient
cache memories in [11]. They also developed a design explo-
ration framework allowing us to evaluate several possible
trade-offs between power consumption and reliability. Chen
et al. presented a method for dynamic voltage/frequency
scaling of networks-on-chip and last level caches inmulticore
processor designs, where the shared resources form a single
voltage/frequency domain in [12]. These techniques reduce
energy delay product by 56% compared to a state-of-the-art
prior work. Moons and Verhelst generalized the Dynamic
Voltage Accuracy Scaling concept to pipelined structures
and quantified its energy overhead in [13]. DVAS technology
includes three parts: energy saving through voltage scaling,
accuracy scaling through bit width reduction, and voltage
scaling through bit width reduction. DVAS is finally applied
to a JPEG image processing application, demonstrating large
system level gains. Arroba et al. proposed a DVFS policy that
reduces power consumption while preventing performance
degradation and a DVFS-aware consolidation policy that
optimizes consumption, considering the DVFS configuration
that would be necessary when mapping virtual machines to
maintain Quality of Service in [14]. Han et al. proposed an
off-line dynamic voltage scaling (DVS) scheme that can be
integrated with EDF, which is a global real-time scheduling
algorithm for symmetric multiprocessor systems in [15].
However, these techniques are unsatisfactory in minimizing
both schedule length and energy consumption.

Resource hibernation is the setting or prediction of the
closing/sleeping time for computer processing components.
There are many challenges for resource hibernation technol-
ogy in cloud computing systems with many cloud computing
resources. For example, the shortcomings of the traditional
scheduling strategies can lead to computer load imbalance;
besides, using resource hibernation technologywill obviously
seriously affect the performance of the entire system.

However, the above researches discuss energy-saving
methods only from the system/hardware management; the
appropriate task scheduling strategies can also achieve the
goal of saving energy in cloud data centers.
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2.2. Task Scheduling Optimization. Cloud computing task
scheduling refers to the allocation and management of
resources in a specific cloud environment according to
certain resource usage rules. Task scheduling problems are
related to the efficiency of all computing facilities and are of
paramount importance [16]. Cloud computing task schedul-
ing is a NP-complete problem; it can be solved in different
methods: traditional deterministic algorithms and heuristic
intelligent algorithms [17–25]. However, those methods don
not take energy consumption into account, and, to overcome
this limitation, researchers have proposed some approaches.
Li et al. proposed a heuristic energy-aware stochastic task
scheduling algorithm called ESTS to solve energy-efficient
task scheduling problem in [26]. Zhang et al. presented new
energy-efficient task scheduling algorithms for both contin-
uous and discrete processor speeds with detailed simulation
and analyses in [27]. Changtian and Jiong adopted the genetic
algorithm to parallel find the reasonable scheduling scheme
in [28].

Nevertheless, all these studies explored different ways of
energy conservation in cloud data center and did not consider
the integrated management strategy. Our approach explores
a set of energy-saving schemes, and the task scheduling
algorithm is innovated. Since the task scheduling model is a
NP-complete problem in cloud computing and considering
the supremacy of ant colony optimization algorithm (ACO)
for solving task scheduling optimization in the cloud and grid
environment [29–31], we select ACO in this paper to find the
schema for task scheduling and achieve energy-consumption
reduction in the cloud data centers.

3. System Model

The dynamic energy management system model is shown
in Figure 1. This system is composed of DVS Management
Module, Load BalancingModule, and Task SchedulingMod-
ule. The cloud data center accepts a task arrival flow that
enters a waiting queue, DVS Management Module observes
the load of each machine and gives commands to optimize
power consumption, and the load state of the machines and
the queue state are transferred to Load Balancing Module,
which gets the available virtual machine resources. Task
Scheduling Module accepts task information and assigns
tasks to available virtual machines.

(1) DVS Management Module. DVS technologies can manage
the applications in a cloud data center in an energy-efficient
way.Thismodulemonitors the running state of eachmachine
and gives commands to optimize power consumption, and
the state of machine 𝑖 can be calculated as follows:

State (𝑖) = RunVM (𝑖)
MaxVM (𝑖) , (1)

where RunVM(𝑖) represents the number of VM instances
running onmachine 𝑖 andMaxVM(𝑖) represents themaximal
number of VM instances a machine can host; it needs to
consider the situation of physical server, virtualmachine load,
and so on.

A threshold value 𝜉 (0 < 𝜉 < 1) is set to 0.5. When
State(𝑖) is higher than 𝜉, the DVSManagementModule issues
commands to improve machine speed level. When it is lower
than 𝜉, it issues downscaling commands.

(2) Load Balancing Module. We calculate the load rate of
each machine according to the status data returned by
the DVS Management Module. Considering the structural
characteristics of cloud computing system, the load rate of
machine 𝑖 is used as an index of resource utilization, and its
calculation method is as follows:

Load (𝑖) = √ 1𝑛 𝑛∑
𝑖=1

(thisMI − sysMI)2, (2)

where thisMI represents the utilization of machine 𝑖, sysMI
denotes the utilization of system, and 𝑛 is the total number of
machines.

A threshold value 𝜃 (0 < 𝜃 < 1) is set to 0.65; when
Load(𝑖) is lower than 𝜃, virtual machines carried on machine𝑖 are added to standby queue.

(3) Task Scheduling Module. Task Scheduling Module accepts
task information and assigns tasks to available virtual
machines. The proposed LET-ACO algorithm is applied to
task scheduling; the goal is to reduce the power consumption
of data center effectively on the premise of performance
guarantee, and specific method will be shown in Sections 4
and 5.

4. Problem Formulation

To further analyze the problem, we set up the following cloud
task scheduling model.

Definition 1. A set of tasks 𝑇𝑖 = {𝑇1, 𝑇2, . . . , 𝑇𝑚}; it indicates𝑚 tasks in the current queue; a set of virtual machines VM𝑗 ={VM1,VM2, . . . ,VM𝑛}; it indicates 𝑛 available computing
resources; the distribution of tasks is defined as an 𝑚 × 𝑛
matrix 𝑅𝑚×𝑛:

𝑅𝑚×𝑛 = (𝑅11 𝑅12 ⋅ ⋅ ⋅ 𝑅1𝑛𝑅21 𝑅22 ⋅ ⋅ ⋅ 𝑅2𝑛... ... ...𝑅𝑚1 𝑅𝑚2 ⋅ ⋅ ⋅ 𝑅𝑚𝑛), (3)

where 𝑅𝑖𝑗 is the number of 𝑇𝑖 running on VM𝑗.

For a complex task, the task system first decomposes
it into several smaller tasks [32] and then allocates tasks
to appropriate computing resources; finally the calculation
results are summarized. Task decomposition should be fol-
lowed by a number of principles:

(1) Independence: maintaining relative independence
between subtasks

(2) Hierarchy: the tasks are decomposed in layers accord-
ing to certain order: parameter, test object, and
function
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Figure 1: Dynamic energy management system model.

(3) Uniformity: the granularity of subtasks is homoge-
neous

(4) Similarity: the decomposed subtasks are as similar as
possible

To illustrate the task scheduling process, we use Stochastic
Petri Net (SPN) [33] to build the model. The task scheduling
process for the cloud data center is shown in Figure 2.

Definition 2. A Petri Net corresponds to a 6-tuple:

SPN = (𝑃, 𝑇, 𝐹,𝑊,𝑀0, 𝜆) , (4)

where 𝑃 and 𝑇 are disjoint sets of places and transitions,
respectively,𝐹 belongs to (𝑆×𝑇)∪(𝑇×𝑆),𝑊𝐹 → 𝑁+ is the set
of arc functions,𝑀0 : 𝑃 → {0, 1, 2, . . .} is the initial marking,
and 𝜆 is the average implementation rate of transitions.

Tables 1 and 2 present the meaning of 𝑃 (place) and 𝑇
(transition).

5. Resource Preallocation

In this section, we describe our optimization model for task
scheduling using LET-ACO method.

5.1. Prediction

5.1.1. Task Execution Time PredictionModel. The resources in
the cloud data centers are full of uncertainty; in one aspect,
the hardware’s abilities of different resources are different, and
the CPU load and network load are varying in every minute;
even the same task has different execution time in the same
resource if it is submitted at different time; in the other aspect,
if two different tasks were executed in two resources with
the same station, the execution times are different, too. The
uncertainty in the two aspects makes it complex to predict a
task’s execution time in cloud data centers.

Table 1: The meaning of place.

Place Explanation𝑝 Sets of tasks𝑝𝑎1, 𝑝𝑎2, 𝑝𝑎3, . . . , 𝑝𝑎𝑚 Tasks of decomposition𝑝𝑏1, 𝑝𝑏2, 𝑝𝑏3, . . . , 𝑝𝑏𝑚 Tasks to be assigned𝑝𝑐1, . . . , 𝑝𝑐𝑛 Computing resources𝑝𝑑1, . . . , 𝑝𝑑𝑛 Intermediate result sets𝑝𝑒 Output result sets

Table 2: The meaning of transition.

Transition Explanation𝑡 Segmenting tasks𝑡𝑎1, 𝑡𝑎2, 𝑡𝑎3, . . . , 𝑡𝑎𝑚 Inputting tasks𝑡𝑏11, . . . , 𝑡𝑏1𝑛; 𝑡𝑏21, . . . , 𝑡𝑏2𝑛;𝑡𝑏31, . . . , 𝑡𝑏3𝑛; 𝑡𝑏𝑚1, . . . , 𝑡𝑏𝑚𝑛 Matching resources𝑡𝑐1, . . . , 𝑡𝑐𝑛 Outputting intermediate result sets𝑡𝑑 Summary processing

According to the features of heterogeneity and dynamic
changes in the cloud computing environment, Dinda pre-
sented a detailed statistical analysis of the dynamic load
information in [34], time series analysis of the traces shows
that load is strongly correlated over time, and the relationship
between them is almost entirely linear. Therefore, we design
a task execution time prediction model based on linear
regression model. In order to enhance the reliability of the
prediction model, we need to make a hypothesis about the
application of prediction:

(1) The task priority being basically the same; it can
ensure the accuracy of prediction
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Figure 2: Stochastic Petri Nets model of task scheduling.

(2) Experiment with tasks of the same type (the amount
of resources used by the tasks)

Since the current state of the calculated node is known,
we use the following model to predict next task’s execution
time on VM𝑗:

Time𝑗 (𝑡) = 𝛼0 + 𝛼1𝑈cpu,𝑗 + 𝛼2𝐹cpu,𝑗 + 𝛼3𝑀𝑗 + 𝛼4𝑆𝑗+ 𝜀, (5)

where 𝑈cpu,𝑗 represents the CPU utilization, 𝐹cpu,𝑗 represents
the CPU basic frequency, 𝑀𝑗 denotes the memory capacity,
and 𝑆𝑗 denotes network bandwidth; 𝛼0, 𝛼1, 𝛼2, 𝛼3, and 𝛼4 are
the regression coefficient; 𝜀 represents random error.

This paper uses statistical methods, so we get a great
amount of data: task execution time, CPU utilization, CPU
basic frequency, memory capacity, and network bandwidth
to compute regression coefficient. The experimental results
show that the average relative error of task execution time is
maintained at less than 6%.

5.1.2. Energy Consumption Prediction Model. In the real
cloud computing system, an important aspect of energy
management technology is the visibility of energy usage.
However, we cannot directly obtain the energy consumption
state data of hardware due to the existence of virtualiza-
tion layer. Therefore, we need to build an indirect energy-
consumptionmeasurementmechanism for virtual machines.
This paper employs the energy-consumption measurement
model of virtual machine used in [35]. The system’s energy
consumption is mainly composed of CPU, memory, disk,

and system-idle energy consumption; it can be expressed as
follows:𝐸sys,𝑗 = 𝐸cpu,𝑗 + 𝐸Mem,𝑗 + 𝐸Disk,𝑗 + 𝐸static,𝑗= 𝛼cpu𝑢cpu,𝑗 + 𝛼mem𝑢mem,𝑗 + 𝛼𝑖𝑜𝑢disk,𝑗 + 𝛾, (6)

where 𝑢cpu,𝑗 denotes processor utilization, 𝑢mem,𝑗 represents
the number of LLC (last level cache) misses for a VM across
all cores used by it during time period, and 𝑢disk,𝑗 represents
the sum of bytes read and written; 𝛼cpu, 𝛼mem, 𝛼𝑖𝑜, and 𝛾 are
model-specific constants.

Processor utilization can be easily obtained from the
processor usage in the operating system; most processors
have the LLC count function; Intel Nehalem processor pro-
vides this functionality on each core, tracking I/O operation
in Hypervisor to get the sum of bytes read and written.
After obtaining a series of experimental data, we use linear
regression with ordinary least-squares estimation to obtain
parameters to establish the model. The experimental results
show that average relative error of the system’s energy
consumption is kept within 10%.

5.2. Task Scheduling Algorithm Based on LET-ACO. The
heterogeneous computing platformmeets the computational
demands of diverse tasks. One of the key challenges of such
heterogeneous processor systems is effective task scheduling
[30]. The task scheduling problem is generally NP-complete.
Many real-time applications are discrete optimization prob-
lems. There is no polynomial time algorithm to solve combi-
natorial optimization problems that are NP-hard. Heuristic
algorithm can solve this problem better. In this paper, the
improved ant colony algorithm is adopted to solve task
scheduling problem.
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Ant colony algorithm, which has the advantages of pos-
itive feedback, distributed parallel computer, more robust-
ness, and being easy to combine with other optimization
algorithms, is a heuristic algorithm with group intelligent
bionic computing method. Ant colony algorithm does well
in finding out the appropriate computing resources in the
unknown network topology.

5.2.1. System Initialization. At the initial time of the system,
ants are randomly placed on VM𝑗, which needs to provide
CPU basic frequency 𝑃𝑗, the number of CPU num𝑗, memory
capacity 𝑅𝑗, and network bandwidth 𝑊𝑗. System initializes
the value of the pheromone on each virtual machine, using
the following equation. 𝑏cpu, 𝑏mem, and 𝑏net are model-specific
constants according to the proportion of each factor; 𝑏cpu +𝑏mem + 𝑏net = 1.𝜏𝑗 (0) = 𝑏cpu (num𝑗 × 𝑃𝑗) + 𝑏mem𝑅𝑗 + 𝑏net𝑊𝑗. (7)

5.2.2.The State Transfer Probability. Every ant chooses virtual
machines judging by pheromone and heuristic informa-
tion. During the iterative process, 𝑃𝑖𝑗𝑘(𝑡󸀠) (state transition
probability) relies on both the amount of information (vir-
tual machine processing capability and energy-consumption
information) and the existing heuristic information on the
path. Individual ants represent decomposed tasks. At time 𝑡󸀠,
the 𝑘th ant chooses VM𝑗 for the next task 𝑖 with a probability
as shown in the following equation:

𝑃𝑗𝑘 (𝑡󸀠) = {{{{{
[𝜏𝑗 (𝑡󸀠)]𝛼 [𝜂𝑗]∑𝑛𝑙=1 [𝜏𝑙 (𝑡󸀠)]𝛼 [𝜂𝑙] if 𝑙, 𝑗 ∈ 1, . . . , 𝑛0 otherwise,

(8)

where 𝛼 is the information heuristic factor that indicates the
importance of the resource pheromone; 𝜏𝑗(𝑡󸀠) represents the
pheromone concentration of VM𝑗 at time 𝑡󸀠; 𝜂𝑗 represents the
expectation that next taskwill be executed onVM𝑗, 𝜂𝑗 = 𝐼𝑗(𝑡),
and 𝐼𝑗(𝑡) is the profit function that represents VM𝑗 profit
when next task is running on VM𝑗; its calculation method
is as follows: 𝐼𝑗 (𝑡) = 1𝜆Time𝑗 (𝑡) − 𝜆󸀠𝐸𝑗 (𝑡) , (9)

where 𝜆 and 𝜆󸀠 are set according to the experimental data;
then our algorithm is used to get the experimental results and
the parameters are adjusted. 𝑃𝑗𝑘(𝑡󸀠) is to be zero when the
virtual machine 𝑗 has been selected or the virtual machine𝑗 fails.
5.2.3. Pheromone Updating. Pheromone updating is done
by all the ants that come up with feasible schedules in the
following manner as shown in the following equation:𝜏𝑗 (𝑡󸀠 + 1) = (1 − 𝜌) 𝜏𝑗 (𝑡󸀠) + Δ𝜏𝑗, (10)

where 𝜏𝑗(𝑡󸀠 + 1) represents the pheromone concentration of
VM𝑗 at the next moment; 𝜌 is volatile factor: 0 ≤ 𝜌 < 1; Δ𝜏𝑗

represents pheromone increment, and its calculationmethod
is as follows: Δ𝜏𝑗 = 𝐷 ⋅max (RES (𝐼𝑘,𝑟)) , (11)

where 𝐷 is the intensity of pheromone and it affects the
rate of convergence; RES(𝐼𝑘,𝑟) represents the task assignment
scheme in which the 𝑘th ant has searched in the 𝑟th iteration
whose value is determined by the profit function value of the
allocation scheme.

If the ant 𝑘 completes the round search (a task allocation
scheme has been found), all the virtual machines on this
path will update the local pheromone. If all ants complete the
round search, finding the optimal path in this iteration, the
virtual machines on the optimal path will update the local
pheromone.

5.2.4. LET-ACO Algorithm Flow. The proposed LET-ACO
algorithm is described according to the following steps.

Step 1. DVSManagement Module obtains the running status
information of each physical host and virtual machine.Then,
it uses DVS technology to control hosts according to State(𝑖).
Step 2. The load state of machines and the queue state are
transferred to Load Balancing Module which can get the
available virtual machine resources.

Step 3. The profit matrix is obtained by calculating 𝐼𝑗(𝑡).
Step 4. Task Scheduling Module sets initial pheromone for
available computing nodes.

Step 5. Initialize the ants and place them randomly on the
available virtual machines.

Step 6. Calculate the transition probability of ant 𝑘 according
to the profit matrix, and choose next node.

Step 7. If the ant 𝑘 completes the round search, local
pheromone will be updated; if not, return to Step 6.

Step 8. If all ants complete the round search, global
pheromone will be updated; if not, return to Step 5.

Step 9. If the number of iterations is required, Task Schedul-
ing Module outputs the optimal allocation scheme; if not,
return to Step 5.

Step 10. Determine whether there is any task to be allocated
in the task queue, and if so, return to Step 1, and if not, end
this task assignment.

LET-ACO runs periodically; Figure 3 depicts the main
flow of the algorithm.

6. Experiments and Performance Analysis

To evaluate our proposed method, the simulation experi-
ments are operated on CloudSim to analyse the effects. We
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End

No
Yes

yes

No

No

Figure 3: Main flow of the LET-ACO algorithm.



8 Mathematical Problems in Engineering

Table 3: Parameters of CloudSim.

Type Parameter Value

Data center Number of data centers 1
Number of hosts per data center 6

Virtual machine (VM)

Total number of VMs 30
MIPS of PE 500–1500 (MIPS)

Number of PEs per VM 2–8
VMmemory 512–2048 (MB)
Bandwidth 500–1000 bit

Task Total number of tasks 100–400
Length of task 5000 (MI)

Table 4: Parameters of LET-ACO algorithm.

Parameter Value
Number of ants in colony 25
Number of iterations 20𝛼 0.2𝜌 0.5
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Figure 4: Execution times of tasks.

design the simulation environment by assuming that there
are 6 hosts, 30VMs, and 100–400 tasks. Data and information
about hosts, VMs, and tasks are summarized in Table 3.

In this experiment, the parameters of the LET-ACO
algorithm are set in Table 4.

Based on the parameters’ settings in Tables 3 and 4, results
of three metrics are obtained and illustrated in Figures 4–7.

Figure 4 shows the comparison of task total running
time using LET-ACO, ACO, Min-Min, and Round-Robin
(RR) algorithms. ACO algorithm [36] is the basic ant colony
algorithm involving time factor. Min-Min algorithm [37] and
RR algorithm [38] are the classic algorithms employed by
process and network schedulers in computing. It is shown
that the task completion time gets longer with the increase
of tasks number. Task execution time is the longest by using
RR algorithm; ACO and LET-ACO algorithm are obviously
superior to the other algorithms. These results suggest that
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Figure 5: Energy consumption of tasks running in system.
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Figure 6: Tasks’ average waiting time.

LET-ACO is very effective in finishing the tasks with small
VM time, and it takes power into consideration, but it does
not bring any increase of the makespan.

In Figure 5, it is shown that the energy that the data
center consumes increases with the number of tasks added.
Compared with the other three algorithms, the proposed
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Figure 7: Host load.

algorithm can significantly reduce the system’s energy con-
sumption. To analyze the reason, it is just because ACO,Min-
Min, and RR algorithms focus solely on the completion time
of the task without considering energy consumption.

Figure 6 shows the task average waiting time for different
algorithms.The results show that the task waiting time based
on LET-ACO algorithm is shorter, which can meet the needs
of users better.

Figure 7 shows the host load using different algorithms.
The cloud system load has been maintained in a relatively
balanced state by using LET-ACO algorithm. Min-Min algo-
rithm can complete the task in a short time, but the load
balancing of Min-Min algorithm is the worst. The resources
with strong processing ability are always in the working
state, while other resources are idle all the time; Min-Min
algorithm cannot reflect the advantages of distributed system.

Taken together, LET-ACO algorithm can reduce the
power consumption of data center effectively on the premise
of performance guarantee.

7. Conclusion

This work proposes an integrated management strategy to
solve the data center power consumption problem. The
resource scheduling system model is built for cloud data
center and this system is analysed by Stochastic Petri Net.
A task-oriented resource allocation method (LET-ACO) is
proposed; it can reduce the power consumption of data
center effectively on the premise of performance guarantee.
To validate the effectiveness of our proposed method, the
simulation experiments are operated on CloudSim.

In the future work, we will try to build more detailed
system model to describe the data center or to build a new
kind of model which can be greatly effective for analysing
particular problems in cloud data center including heteroge-
neous tasks scheduling and fault diagnosing, andwemay take
more factors into consideration; for example, not only time
and power consumption but also the state of the hosts can
influence the energy of the data center; another promising

future work direction is to try to use other biocomputing
methods to solve some problems in cloud data center.
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