94 research outputs found

    Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Get PDF
    Background: Isoprenylcysteine methylesterases (ICME) demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results: Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1) in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER) and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques). Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration stimuli led to no significant change of both ICME and ICME-like gene expression. Mutant icme-like2-1 showed increased sensitivity to ABA but slightly decreased sensitivity to salt and osmotic stresses during seed germination. Conclusions: It is concluded that the ICME family is involved in stress and ABA signaling in Arabidopsis, probably through mediating the process of demethylating prenylated proteins. Identification of these prenylated proteins will help to better understand the significance of protein prenylation in Planta

    DETERMINATION OF DESIGN PARAMETERS OF ASPHALT PAVEMENT BASED ON PG TECHNOLOGY

    Get PDF
    The design parameters are one of the important factors to ensure the quality of asphalt pavement design. In “Highway Asphalt Pavement Design Specification” (JTGD50-2017), the stander of China, used the asphalt mixture anti-pressure resilience modulus at a single temperature of 20 ℃ as the design metrics. However, asphalt mixture, as a sticky-bullet plastic material, shows different mechanical properties at different temperatures. China is a vast territory, and there are great differences between the high and low temperature value (m and n) of each region. Therefore, it is unreasonable to design asphalt pavement only with the asphalt mixture anti-pressure resilience modulus value at 20 ℃. Studies show that the design parameters using PG technology can improve the high temperature anti-rutting and low temperature cracking performance of asphalt pavement

    CO2 adsorption and separation properties of M-MOF-74 materials determined by molecular simulation

    Get PDF
    This study simulated the adsorption and separation of CO2 by the metal-organic frameworks material M-MOF-74, established the skeleton model of M-MOF-74 series adsorbent, and calculated the adsorption of CO2 pure component gas and CO2/N2 mixed gas on MMOF- 74 series adsorbent by the grand canonical Monte Carlo method. Among the CO2 adsorption performances of MOF-74 materials with metal centers of Mg, Co, Ni, and Zn, Mg-MOF-74 had the highest CO2 adsorption capacity, adsorption selection coefficient and adsorption heat. When mixed gas was adsorbed, the law of CO2 adsorption was consistent with that of pure CO2 adsorption. The size law of adsorption heat on MOF-74 was similar to that of adsorption amount. Our findings demonstrated that the interaction between the metal-organic framework material and CO2 is greater than that between the material and N2. The interaction between the gas and the MOF-74 series adsorbent was the main factor affecting the adsorption amount, which reveals the strong influence of metal central atoms on the amount of gas adsorption. Our findings provide new ideas for the design of efficient adsorbent materials.Cited as: Deng, J., Zhao, G., Zhang, L., Ma, H., Rong, Y. CO2 adsorption and separation properties of M-MOF-74 materials determined by molecular simulation. Capillarity, 2023, 6(1): 13-18. https://doi.org/10.46690/capi.2023.01.0

    Dcc Mediates Functional Assembly of Peripheral Auditory Circuits.

    Get PDF
    Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal\u27s canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal\u27s canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss

    Broad Inhibition Sharpens Orientation Selectivity by Expanding Input Dynamic Range in Mouse Simple Cells

    Get PDF
    SummaryOrientation selectivity (OS) is an emergent property in the primary visual cortex (V1). How OS arises from synaptic circuits remains unsolved. Here, in vivo whole-cell recordings in the mouse V1 revealed that simple cells received broadly tuned excitation and even more broadly tuned inhibition. Excitation and inhibition shared a similar orientation preference and temporally overlapped substantially. Neuron modeling and dynamic-clamp recording further revealed that excitatory inputs alone would result in membrane potential responses with significantly attenuated selectivity, due to a saturating input-output function of the membrane filtering. Inhibition ameliorated the attenuation of excitatory selectivity by expanding the input dynamic range and caused additional sharpening of output responses beyond unselectively suppressing responses at all orientations. This “blur-sharpening” effect allows selectivity conveyed by excitatory inputs to be better expressed, which may be a general mechanism underlying the generation of feature-selective responses in the face of strong excitatory inputs that are weakly biased

    Intratumoral microbiome impacts immune infiltrates in tumor microenvironment and predicts prognosis in esophageal squamous cell carcinoma patients

    Get PDF
    BackgroundDifferent intratumoral microbiotaexist in different tumors and play a crucial function in carcinogenesis. However, whether they impact clinical outcomes in esophageal squamous cell carcinoma (ESCC) and their mechanism remain unclear.Methods16S rDNA amplicon sequencing was performed on surgically resected samples from 98 ESCC patients to analyze intratumoral microbiome abundance and composition. Multiplex fluorescent immunohistochemistry staining was used to profile the phenotypes of immune infiltrates in the tumor microenvironment (TME).ResultsPatients with higher intratumoral Shannon index had significantly worse surgical outcomes. When patients were divided into short-term survivors and long-term survivors based on the median survival time, both intratumoral alpha-diversity and beta-diversity were found to be significantly inconsistent, and the relative abundance of Lactobacillus and Leptotrichia emerged as the two microorganisms that probably influenced the survival of ESCC patients. Only Lactobacillus in ESCC was validated to significantly worsen patients’ prognoses and to be positively correlated with the Shannon index. Multivariate analysis revealed that the intratumoral Shannon index, the relative abundance of Lactobacillus, and the pathologic tumor–node–metastasis (pTNM) stage were independently associated with patients’ overall survival. Furthermore, the relative abundance of both Lactobacillus and Shannon index was positively correlated with the proportions of PD-L1+ epithelial cells (ECs) and tumor-associated macrophages (TAMs). The Shannon index was negatively correlated with the proportions of natural killer (NK) cells in the TME.ConclusionsA high abundance of intratumoral Lactobacillus and bacterial alpha-diversity was associated with the formation of the immunosuppressive TME and predicted poor long-term survival in ESCC patients

    Tracking microRNA Processing Signals by Degradome Sequencing Data Analysis

    Get PDF
    Degradome sequencing (degradome-seq) was widely used for cleavage site mapping on the microRNA (miRNA) targets. Here, the application value of degradome-seq data in tracking the miRNA processing intermediates was reported. By adopting the parameter “signal/noise” ratio, prominent degradome signals on the miRNA precursors were extracted. For the 15 species analyzed, the processing of many miRNA precursors were supported by the degradome-seq data. We found that the supporting ratio of the “high-confidence” miRNAs annotated in miRBase was much higher than that of the “low-confidence.” For a specific species, the percentage of the miRNAs with degradome-supported processing signals was elevated by the increment of degradome sampling diversity. More interestingly, the tissue- or cell line-specific processing patterns of the miRNA precursors partially contributed to the accumulation patterns of the mature miRNAs. In this study, we also provided examples to show the value of the degradome-seq data in miRNA annotation. Based on the distribution of the processing signals, a renewed model was proposed that the stems of the miRNA precursors were diced through a “single-stranded cropping” mode, and “loop-to-base” processing was much more prevalent than previously thought. Together, our results revealed the remarkable capacity of degradome-seq in tracking miRNA processing signals

    Distinguishing Emission-Associated Ambient Air PM2.5 Concentrations and Meteorological Factor-Induced Fluctuations

    Get PDF
    Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions

    Concentration protile of etchant measured by microelectrode technique in the process of chemical micromachining

    Get PDF
    A carbon-disk microelectrode was used to investigate the surface concentration profile of etchant Br-2, which was electrogenerated on the Pt working electrode. The steady state reducing currents of Br-2 at different distances away from the Pt electode was measured. The concentration profile was estimated from the current-distance variation curves as a function of different sampling times. Experimentally determined concentration profiles are in good agreement with those estimated from the microetching results. The microelectrode technique has offered a good method to choose suitable etching solution for chemical micromachining
    corecore