45 research outputs found

    Study on turbidity current head going through the changing width section

    Get PDF
    AbstractBased on former research on the turbidity current, and learning lessons from the study on turbidity current,11 flume experiments has been operated with combined factors on different sediment concentration and different width. From the surveyed data turbidity current head going through the changing width section have been analyzed. Taken use of mathematical statistics method, local resistance coefficient of turbidity current head has been acquired on the changing width section

    catena-Poly[[[diaqua­iron(II)]-μ-pyridine-2,5-dicarboxyl­ato-[tetra­aqua­iron(II)]-μ-pyridine-2,5-dicarboxyl­ato] tetra­hydrate]

    Get PDF
    In the crystal structure of the title compound, {[Fe2(C7H3NO4)2(H2O)6]·4H2O}n, there are two types of coordination for the FeII atoms. One FeII atom is in a distorted octa­hedral N2O4 environment, with two chelating rings from the pyridine­dicarboxyl­ate ligands and two O atoms from the water mol­ecules, while the other is in a distorted octa­hedral O6 environment with two O atoms from the pyridine­dicarboxyl­ate ligands and four O atoms from the water mol­ecules. Both FeII atoms lie on crystallographic centers of symmetry. The complex possesses an infinite chain structure running along the [101] direction. These chains are inter­connected by the uncoordinated water mol­ecules through O—H⋯O hydrogen bonds

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore