2,916 research outputs found

    Full-commanding a network: The dictator

    Get PDF
    A network of chaotic dynamical systems may synchronize. For some networks there is the possibility that, coupling a new node to the network, the synchronization will be commanded by that new node. That possibility depends on the network and on the way the new node is coupled to the network.We consider a coupling that can provide what we call a full-commanding and we define the corresponding full-commandwindow. The limit situations corresponding to a completely connected network and to a completely disconnected one provide us some understanding about what makes a network more receptive or more resistant to commanding

    Control of Emi2 activity and stability through Mos-mediated recruitment of PP2A.

    Get PDF
    Before fertilization, vertebrate eggs are arrested in meiosis II by cytostatic factor (CSF), which holds the anaphase-promoting complex (APC) in an inactive state. It was recently reported that Mos, an integral component of CSF, acts in part by promoting the Rsk-mediated phosphorylation of the APC inhibitor Emi2/Erp1. We report here that Rsk phosphorylation of Emi2 promotes its interaction with the protein phosphatase PP2A. Emi2 residues adjacent to the Rsk phosphorylation site were important for PP2A binding. An Emi2 mutant that retained Rsk phosphorylation but lacked PP2A binding could not be modulated by Mos. PP2A bound to Emi2 acted on two distinct clusters of sites phosphorylated by Cdc2, one responsible for modulating its stability during CSF arrest and one that controls binding to the APC. These findings provide a molecular mechanism for Mos action in promoting CSF arrest and also define an unusual mechanism, whereby protein phosphorylation recruits a phosphatase for dephosphorylation of distinct sites phosphorylated by another kinase

    Estimating black hole masses of blazars

    Full text link
    Estimating black hole masses of blazars is still a big challenge. Because of the contamination of jets, using the previously suggested size -- continuum luminosity relation can overestimate the broad line region (BLR) size and black hole mass for radio-loud AGNs, including blazars. We propose a new relation between the BLR size and HβH_{\beta} emission line luminosity and present evidences for using it to get more accurate black hole masses of radio-loud AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission lines, we suggest to use the fundamental plane relation of their elliptical host galaxies to estimate the central velocity dispersions and black hole masses, if their velocity dispersions are not known but the host galaxies can be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO 0235+164 and 3C 66B, are obtained using these two methods and the M - σ\sigma relation. The implications of their black hole masses on other related studies are also discussed.Comment: 7 pages, invited talk presented in the workshop on Multiwavelength Variability of Blazars (Guangzhou, China, Sept. 22-24, 2010). To be published in the Journal of Astrophysics and Astronom

    Spin- and energy relaxation of hot electrons at GaAs surfaces

    Full text link
    The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and expanded version; eps figures now included in the tex

    Fractional quantum Hall effect in the absence of Landau levels

    Full text link
    It has been well-known that topological phenomena with fractional excitations, i.e., the fractional quantum Hall effect (FQHE) \cite{Tsui1982} will emerge when electrons move in Landau levels. In this letter, we report the discovery of the FQHE in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically nontrivial flat band model on the checkerboard lattice \cite{sun}. In the presence of nearest-neighboring repulsion (UU), we find that at 1/3 filling, the Fermi-liquid state is unstable towards FQHE. At 1/5 filling, however, a next-nearest-neighboring repulsion is needed for the occurrence of the 1/5 FQHE when UU is not too strong. We demonstrate the characteristic features of these novel states and determine the phase diagram correspondingly.Comment: 6 pages and 4 figure

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio

    Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate

    Get PDF
    Background: A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results: The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion: Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation

    Quantum gravitational sensor for space debris

    Get PDF
    Matter-wave interferometers have fundamental applications for gravity experiments such as testing the equivalence principle and the quantum nature of gravity. In addition, matter-wave interferometers can be used as quantum sensors to measure the local gravitational acceleration caused by external massive moving objects, thus lending itself for technological applications. In this paper, we will establish a three-dimensional model to describe the gravity gradient signal from an external moving object, and theoretically investigate the achievable sensitivities using the matter-wave interferometer based on the Stern-Gerlach setup. As an application we will consider the mesoscopic interference for metric and curvature and gravitational-wave detection scheme [R. J. Marshman, Mesoscopic interference for metric and curvature (MIMAC) & gravitational wave detection, New J. Phys. 22, 083012 (2020)NJOPFM1367-263010.1088/1367-2630/ab9f6c] and quantify its sensitivity to gravity gradients using frequency-space analysis. We will consider objects near Earth-based experiments and space debris in proximity of satellites and estimate the minimum detectable mass of the object as a function of their distance, velocity, and orientation

    Counterexample-Driven Synthesis for Probabilistic Program Sketches

    Full text link
    Probabilistic programs are key to deal with uncertainty in e.g. controller synthesis. They are typically small but intricate. Their development is complex and error prone requiring quantitative reasoning over a myriad of alternative designs. To mitigate this complexity, we adopt counterexample-guided inductive synthesis (CEGIS) to automatically synthesise finite-state probabilistic programs. Our approach leverages efficient model checking, modern SMT solving, and counterexample generation at program level. Experiments on practically relevant case studies show that design spaces with millions of candidate designs can be fully explored using a few thousand verification queries.Comment: Extended versio
    corecore