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Abstract. A network of chaotic dynamical systems may synchronize.
For some networks there is the possibility that, coupling a new node to
the network, the synchronization will be commanded by that new node.
That possibility depends on the network and on the way the new node is
coupled to the network. We consider a coupling that can provide what we
call a full-commanding and we define the corresponding full-command-
window. The limit situations corresponding to a completely connected
network and to a completely disconnected one provide us some under-
standing about what makes a network more receptive or more resistant
to commanding.
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1 Introduction

The synchronization of coupled chaotic dynamical systems is largely studied in
literature [1], [2], [3], [4], [5]. In section 2, we consider a network of identical
one-dimensional chaotic discrete dynamical systems connected to each other in
a linear way and we obtain conditions for the synchronization to take place. The
possibility of commanding the synchronized behavior is obviously a relevant
subject. We analyse the possibility to achive that by adding a new node in a
full-commanding way, and we call this new node the dictator. In section 3, we
analyse the conditions that a network needs to satisfy to be full-commandable.
Even if a network is full-commandable, not all the values of the coupling strength
constant that couples the dictator to the other nodes of the network allow the
dictator to command the network. Those which do so define the full-command-
window. In section 3, we also obtain that window and particularize it for a
completely connected network and for a completely disconnected one, getting
some conclusions about what may provide more resistance or more receptiveness
to the full-commanding by a dictator.
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2 Complete synchronization in a network

We consider a network of N one-dimensional chaotic discrete dynamical systems,
xi (i = 1, ..., N), with the same dynamic defined by the map f , described by

xi (t+ 1) = f (xi (t)) +

N∑
j=1
j 6=i

aij · [f (xj (t))− f (xi (t))]

or, equivalently, by

xi (t+ 1) = (1−
N∑
j=1
j 6=i

aij) · f (xi (t)) +

N∑
j=1
j 6=i

aij · f (xj (t))

where aij ∈ R+
0 (i, j = 1, ..., N) are the coupling constants.

Defining−→x (t) =
[
x1 (t) x2 (t) ... xN (t)

]T
and
−→
f (−→x (t)) =

[
f (x1 (t)) f (x2 (t)) ... f (xN (t))

]T
,

aii = −
N∑
j=1
j 6=i

aij and A = [aij ], these equations may be written as

−→x (t+ 1) = (IN +A) ·
−→
f (−→x (t)) (1)

and we call A the coupling matrix.

We note that λ = 0 is an eigenvalue of A (in fact, A · −→1 =
−→
0 = 0 · −→1 , with

−→
1 = [11...1]

T
). Further, network (1) admits a completely synchronized solution

(see definition hereafter), namely −→x (t) = x1(t) · −→1 is a solution of (1), for any
function x1(t) that satisfies x1 (t+ 1) = f (x1 (t)).

Definition 1. We say that the coupled system (1) admits a completely synchro-
nized solution if there is a synchronized function s(t) such that (x1(t), x2(t)) =
(s(t), s(t)) is a solution of (1).

The following proposition (a variant of similar results already presented [6],
[7]) provides conditions for the existence of an exponentially stable completely
synchronized solution.

Proposition 1. Considering the dynamical network (1) with A a diagonal-
izable matrix such that λ1 = 0 is an eigenvalue of multiplicity 1, if all the
other eigenvalues λi (i = 2, ..., N) are such that |1 + λi| < e−h, where h is
the Lyapunov exponent of the nodes, then the completely synchronized solution
−→x (t) = x1(t) · −→1 , with x1(t) satisfying x1 (t+ 1) = f (x1 (t)), is exponentially
stable. If |1 + λi| > e−h for a non-zero eigenvalue λi, then there is not an expo-
nentially stable completely synchronized solution.
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Proof. Considering −→x (t) = x1(t) · −→1 + −→u (t), the linearization of (1) around
−→x (t) = x1(t) · −→1 provides

x1(t+ 1) · −→1 +−→u (t+ 1) =

= (IN +A) ·
[
f (x1(t))

−→
1 + f ′ (x1(t)) · −→u (t)

]
and, since A · −→1 = 0 · −→1 and x1 (t+ 1) = f (x1 (t)), we obtain

−→u (t+ 1) = (IN +A) · f ′ (x1(t)) · −→u (t)

Considering D = diag(0, λ2, λ3, ..., λN ), a diagonal matrix similar to A, and
−→v (t) = S · −→u (t), with S such that D = SAS−1, the previous equation is
equivalent to

−→v (t+ 1) = (IN +D) · f ′ (x1(t)) · −→v (t)

⇔{
v1 (t+ 1) = f ′ (x1(t)) · v1 (t)
vi (t+ 1) = (1 + λi) · f ′ (x1(t)) · vi (t) , i = 2, ..., N

Then, for i = 2, ..., N ,

vi (t+ T ) = (1 + λi)
T ·

t+T∏
τ=t

f ′ (x1(τ)) · vi (t) ,

and since the Lyapunov exponent h of x1 (t+ 1) = f (x1 (t)) is h = lim
T→+∞

t+T∑
τ=t

ln|f ′(x1(τ))|
T ,

we obtain

lim
T→+∞

|vi (t+ T )| =

= lim
T→+∞

∣∣∣(1 + λi)
T
∣∣∣ · eln

t+T∏
τ=t

|f ′(x1(τ))|
· |vi (t)| =

= lim
T→+∞

(
|1 + λi| eh

)T · |vi (t)|

If |1 + λi| eh < 1 or, equivalently, |1 + λi| < e−h for i = 2, ..., N , then the

completely synchronized solution −→x (t) = x1(t) · −→1 is exponentially stable.
If there is a i ∈ {2, ..., N} such that |1 + λi| eh > 1 or, equivalently, |1 + λi| >

e−h, then there is not an exponentially stable completely synchronized solution.

Now, we introduce another node y - the dictator - and we want to analyse how
it can command the network and how the network can resist to its command.
The analysis done in [8] regarding what was called there the Commanded Linear
Coupled System, sugests that we make a one-way connection of the new node
y to all the other nodes. We will consider a full-commanding: one in which
the dictator is connected to all other nodes with the same commanding coupling
strength constant ε ∈ R+

0 .
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3 Full-commanding

Using a new node y to full-command the network (1) originates the following
new network:


xi (t+ 1) = f (xi (t)) +

N∑
j=1
j 6=i

aij · [f (xj (t))− f (xi (t))] + ε · [f (y(t)− f (xi (t))]

y(t+ 1) = f (y (t))

with i = 1, ..., N , or, equivalently,


xi (t+ 1) = (1−

N∑
j=1
j 6=i

aij − ε) · f (xi (t)) +

N∑
j=1
j 6=i

aij · f (xj (t)) + ε · f (y (t))

y(t+ 1) = f (y (t))

Defining −→x0 (t) =
[
x1 (t) x2 (t) ... xN (t) y (t)

]T
and A0 =

[
A− εIN ε

−→
1

−→
0 T 0

]
,

these equations may be written as

−→x0 (t+ 1) = (IN+1 +A0) ·
−→
f (−→x0 (t)) (2)

Proposition 2. If |ε− (1 + λi)| < e−h, for all the eigenvalues λi of the diag-
onalizable coupling matrix A of the network (1), then the dictator y commands

the network, i.e. −→x0 (t) = y(t) · −→1 is an exponentially stable solution of (2). If

|ε− (1 + λi)| > e−h for an eigenvalue λi, then −→x0 (t) = y(t) · −→1 is not an ex-
ponentially stable solution of (2), i.e. the dictator is not able to command the
network in a full-commanding way.

Proof. The eigenvalues of A0 are λ = 0 and λ = λi − ε. Since the sum of the
entries in each row of A0 is equal to zero and the off-diagonal elements are
nonnegative, lemma 2 of [9] assures that Re(λi) ≤ 0 for all eigenvalues λi of
A. Further ε ∈ R+

0 . Then A0 has just one zero eigenvalue and Proposition 1
determines that if |1 + λi − ε| < e−h or, equivalently, |ε− (1 + λi)| < e−h, then

the synchronized solutions −→x0 (t) = x1(t) · −→1 , with x1(t) satisfying x1 (t+ 1) =
f (x1 (t)), are exponentially stable. Since y is a free node, i.e. since y satisfies

y (t+ 1) = f (y (t)), then −→x0 (t) = y(t) · −→1 is an exponentially stable solution of
(2).

Proposition 1 also determines that if |ε− (1 + λi)| > e−h for at least one of

the eigenvalues λi of A, then −→x0 (t) = y(t) · −→1 is not an exponentially stable
solution of (2).
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This lead us to define

Definition 2. We define full-command-window (FCW ) of the network (1) as
the open set of values of the commanding coupling constant ε for which the

synchronized solution −→x0 (t) = y(t) · −→1 is an exponentially stable solution of (2).
If FCW 6= ∅, we say that network (1) is full-commandable.

Proposition 2 determines that

FCW =

N⋂
i=1

{
ε ∈ R+

0 : |ε− (1 + λi)| < e−h
}

and we note that there are networks that are not full-commandable, as is estab-
lished in the following proposition.

Proposition 3. If a diagonalizable coupling matrix A has two eigenvalues that
are distant from each other more than 2e−h, then the network (1) with the cou-
pling matrix A is not full-commandable. That is also true if A has an eigenvalue
λ such that Im(λ) > e−h.

Proof. We name λ1 and λ2 the two eigenvalues of A such that |λ1 − λ2| >
2e−h. Let us suppose that A is full-commandable. Then, Proposition 2 as-
sures that |ε− (1 + λ1)| ≤ e−h and |ε− (1 + λ2)| ≤ e−h, providing |λ1 − λ2| =
|[ε− (1 + λ2)]− [ε− (1 + λ1)]| ≤ |ε− (1 + λ1)|+ |ε− (1 + λ1)| ≤ e−h + e−h =
2e−h. This contradicts our assumption and, so, we conclude that A is not full-
commandable.

If there is a λ such that Im(λ) > e−h then

|ε− (1 + λ)| =
√

(ε− 1− Re(λ))2 + (Im(λ))2 > Im(λ) > e−h

and so the network is not full-commandable.

There are situations for which we can obtain a simpler description of FCW .

Proposition 4. Considering a network (1) such that A is diagonalizable, all
its eigenvalues are real and λN is the smallest one, then the network is full-
commandable if λN > −2e−h and FCW reduces to

]
1− e−h, 1 + λN + e−h

[
.

Proof. Since A is diagonalizable, we can use Proposition 2. If all the eigen-

values of A are real, then FCW =

N⋂
i=1

]
1 + λi − e−h, 1 + λi + e−h

[
. If λ1 and

λN are the largest and smallest eigenvalues of A, respectively, the intersec-
tion that defines the FCW will be nonempty if and only if 1 + λN + e−h >
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1 + λ1 − e−h or, equivalently, λN > λ1 − 2e−h and, in that situation FCW =]
1 + λ1 − e−h, 1 + λN + e−h

[
. Since the sum of the entries in each row of A

is equal to zero and the off-diagonal elements are nonnegative, lemma 2 of
[9] determines that λi ≤ 0. Further, zero is an eigenvalue of A associated to

the eigenvector
−→
1 . So, λ1 = 0 and we conclude that the network (1) is full-

commandable if λN > −2e−h and FCW =
]
1− e−h, 1 + λN + e−h

[
.

It is worthwhile to emphasize that for a full-commandable network in the
conditions of the previous Proposition, the smallest commanding coupling con-
stant is ε = 1−e−h, a value that does not depend on the structure of the network,
it only depends on the dynamic of the nodes.

Since a symmetric matrix is diagonalizable and all its eigenvalues are real,
we can use Proposition 5 for a symmetric network (1), i.e for a network (1)
corresponding to a symmetric coupling matrix. We consider two limit situations
in what respects to connectedness:

Proposition 5. A completely disconnected network, i.e. a network (1) with a
zero matrix A, is full-commandable and its full-command-window is

]
1− e−h, 1 + e−h

[
.

Proof. All the eigenvalues of a zero matrix are zero. So, Proposition 5 deter-
mines that the network is full-commandable (since 0 > −2e−h) and FCW =]
1− e−h, 1 + e−h

[
.

Proposition 6. A completely connected network, i.e. a network (1) with

A = c ·


−(N − 1) 1 1 ... 1

1 −(N − 1) 1 ... 1
1 1 −(N − 1) ... 1
... ... ... ... ...
1 1 1 ... −(N − 1)

 ,

where c is the global coupling strength, is full-commandable if Nc < 2e−h and
its full-command-window is

]
1− e−h, 1−Nc+ e−h

[
.

Proof. Considering det
(
1
cA− λIN

)
, if we substitute the first row (R1) by the

sum of all the rows (
N∑
i=1

Ri), and all the remaining rows (Rj , with j = 2, ..., N)

by Rj + 1
λ

N∑
i=1

Ri, we obtain
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det
(
1
cA− λIN

)
=

= det


−λ −λ −λ ... −λ
0 −N − λ 0 ... 0
0 0 −N − λ ... 0
... ... ... ... ...
0 0 0 ... −N − λ

 =

= −λ · (−N − λ)N−1,

i.e. λ = 0 and λ = −N are the eigenvalues of 1
cA of multiplicity 1 and

N − 1, respectively. So, the eigenvalues of A are λ = 0 and λ = −Nc and
Proposition 5 determines that if Nc < 2e−h then the completely connected
network is full-commandable and that its full-command-window is FCW =]
1− e−h, 1−Nc+ e−h

[
.

4 Conclusions

Some networks (1) may be full-commanded by a dictator. The full-commanding
possibility depends on the structure of the network (namely on the eigenvalues
of coupling matrix A) and on the nature of the nodes (namely on its Lyapunov
exponent). If the network is symmetric, or if at least all the eigenvalues of A are
real, the minimum effort (i.e. the minimum value of the commanding coupling
strength constant) that needs to be used in order to the dictator to command the
network just depends on the nature of the nodes (namely on its Lyapunov ex-
ponent). While a completely disconnected network is always full-commandable,
a completely connected one is as more difficult to command, as larger is the
network (larger N) and as stronger are the connections between nodes (larger
c).
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