195 research outputs found
A picogram and nanometer scale photonic crystal opto-mechanical cavity
We describe the design, fabrication, and measurement of a cavity
opto-mechanical system consisting of two nanobeams of silicon nitride in the
near-field of each other, forming a so-called "zipper" cavity. A photonic
crystal patterning is applied to the nanobeams to localize optical and
mechanical energy to the same cubic-micron-scale volume. The picrogram-scale
mass of the structure, along with the strong per-photon optical gradient force,
results in a giant optical spring effect. In addition, a novel damping regime
is explored in which the small heat capacity of the zipper cavity results in
blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure
Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
Synthetic magnetism has been used to control charge neutral excitations for
applications ranging from classical beam steering to quantum simulation. In
optomechanics, radiation-pressure-induced parametric coupling between optical
(photon) and mechanical (phonon) excitations may be used to break time-reversal
symmetry, providing the prerequisite for synthetic magnetism. Here we design
and fabricate a silicon optomechanical circuit with both optical and mechanical
connectivity between two optomechanical cavities. Driving the two cavities with
phase-correlated laser light results in a synthetic magnetic flux, which in
combination with dissipative coupling to the mechanical bath, leads to
nonreciprocal transport of photons with 35dB of isolation. Additionally,
optical pumping with blue-detuned light manifests as a particle non-conserving
interaction between photons and phonons, resulting in directional optical
amplification of 12dB in the isolator through direction. These results indicate
the feasibility of utilizing optomechanical circuits to create a more general
class of nonreciprocal optical devices, and further, to enable novel
topological phases for both light and sound on a microchip.Comment: 18 pages, 8 figures, 4 appendice
Baubles, Bangles, and Biotypes: A Critical Review of the use and Abuse of the Biotype Concept
Pest species of insects are notoriously prone to escape the weapons deployed in management efforts against them. This is particularly true in herbivorous insects. When a previously successful tactic fails the insect population has apparently adapted to it and is often considered to be a new or distinct entity, and given the non-formal category ‘biotype’. The entities falling under the umbrella term ‘biotype’ are not consistent either within or between biotypes, and their underlying genetic composition and origins, while generally unknown, are likely heterogeneous within and variable between biotypes. In some cases race or species may be more appropriate referents. Some examples of applications of the concept in the context of host plant resistance are discussed. It is argued here that the term ‘biotype’ and its applications are overly simplistic, confused, have not proved useful in current pest management, and lack predictive power for future management
Visualizing peripheral nerve regeneration by whole mount staining.
Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries
Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein
After entry into target cells, retroviruses encounter the host restriction
factors such as Fv1 and TRIM5α. While it is clear that these factors target
retrovirus capsid proteins (CA), recognition remains poorly defined in the
absence of structural information. To better understand the binding interaction
between TRIM5α and CA, we selected a panel of novel N-tropic murine
leukaemia virus (N-MLV) escape mutants by a serial passage of replication
competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using
a small percentage of unrestricted cells to allow multiple rounds of virus
replication. The newly identified mutations, many of which involve changes in
charge, are distributed over the outer ‘top’ surface of N-MLV CA,
including the N-terminal β-hairpin, and map up to 29 Ao apart.
Biological characterisation with a number of restriction factors revealed that
only one of the new mutations affects restriction by human TRIM5α,
indicating significant differences in the binding interaction between N-MLV and
the two TRIM5αs, whereas three of the mutations result in dual sensitivity
to Fv1n and Fv1b. Structural studies of two mutants show
that no major changes in the overall CA conformation are associated with escape
from restriction. We conclude that interactions involving much, if not all, of
the surface of CA are vital for TRIM5α binding
P. falciparum In Vitro Killing Rates Allow to Discriminate between Different Antimalarial Mode-of-Action
Chemotherapy is still the cornerstone for malaria control. Developing drugs against Plasmodium parasites and monitoring their efficacy requires methods to accurately determine the parasite killing rate in response to treatment. Commonly used techniques essentially measure metabolic activity as a proxy for parasite viability. However, these approaches are susceptible to artefacts, as viability and metabolism are two parameters that are coupled during the parasite life cycle but can be differentially affected in response to drug actions. Moreover, traditional techniques do not allow to measure the speed-of-action of compounds on parasite viability, which is an essential efficacy determinant. We present here a comprehensive methodology to measure in vitro the direct effect of antimalarial compounds over the parasite viability, which is based on limiting serial dilution of treated parasites and re-growth monitoring. This methodology allows to precisely determine the killing rate of antimalarial compounds, which can be quantified by the parasite reduction ratio and parasite clearance time, which are key mode-of-action parameters. Importantly, we demonstrate that this technique readily permits to determine compound killing activities that might be otherwise missed by traditional, metabolism-based techniques. The analysis of a large set of antimalarial drugs reveals that this viability-based assay allows to discriminate compounds based on their antimalarial mode-of-action. This approach has been adapted to perform medium throughput screening, facilitating the identification of fast-acting antimalarial compounds, which are crucially needed for the control and possibly the eradication of malaria
Active Site Mutations Change the Cleavage Specificity of Neprilysin
Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1–40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating than neprilysin. Mutants NEPF563L and NEPS546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß1–40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential
Characterization of Two Malaria Parasite Organelle Translation Elongation Factor G Proteins: The Likely Targets of the Anti-Malarial Fusidic Acid
Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria
- …