39 research outputs found

    Modelling of cold start emissions for passenger cars

    No full text
    Contract, conv. n° 99 66 014Rapport de rechercheAfter a survey among 39 European laboratories, data were obtained concerning 1 556 vehicles and 29 825 measurements (1 measurement corresponds to 1 vehicle, 1 cycle and 1 pollutant). Data were measured during standardised and representative cycles. The data received were analysed in order to model cold-start-related excess omissions (defined as the difference between cold and hot omissions, for a same cycle) for 4 regulated pollutants (co, c02, hc, nox), fuel consumption and 121 non regulated pollutants as a function of various parameters: technology or omission standard, average speed, ambient travelled distance. Mots clés libres : transport; émission; pollutant; cold start; driving cycle; catalyst; diesel; passenger car; ambient température; engine temperature; model; speed; travelled distanc

    Effect of diesel exhaust particles on human lung epithelial cells: an in vitro study

    Get PDF
    SummaryAtmospheric particulate matter (PM), an ingredient of urban pollution matter, is a mixture of solid and liquid particles differing in origin, dimension and composition. There is big concern about inhaled PM in urban areas, especially due to its adverse effects on the respiratory system. Diesel exhaust particulate (DEP), which constitutes the major part of PM, is characterized by a carbonic mixture composed of approximately 18,000 different high-molecular-weight organic compounds. Diesel engines release 10 times the amount of NO2 aldehydes and breathable PM compared to unleaded gasoline engines and more than 100 times that produced by catalysed gasoline engines; these data gain great significance when taken into account the fact that diesel-powered vehicles are becoming more and more popular. DEP polyaromatic hydrocarbons (PAH), once deposited on airways mucous surfaces easily pass through epithelial cells (ECs) membranes, bind themselves to cytosolic receptors and then affect cell growth and differentiation. Human lung epithelial cells and macrophages engulf DEP, this resulting in increased proinflammatory cytokines release (IL-6, IL-8 and GM-CSF). We investigated the biological effects of DEP-PM on the human lung EC line A549. Light microscopy analysis suggested the presence of cell wall alterations, and provided evidence of PM internalization and cytoplasmic vacuolization. Following PM stimulation, nuclei also were seen undergo clear gross morphological modifications. Immunocytochemistry was used to detect intracytoplasmic IL-6 and IL-8 expression

    Inflammatory effects on human lung epithelial cells after exposure to diesel exhaust micron sub particles (PM₁.₀) and pollen allergens.

    No full text
    Asthma is currently defined as a chronic inflammatory disease of the airway. Several evidence indicate that vehicle emissions in cities is correlated with the allergic respiratory diseases. In the present study, we evaluated in the A549 cells the production and release of IL-4, IL-5 and IL-13 after treatment with sub-micron PM(1.0) particles (PM(1.0)), Parietaria officinalis (ALL), and PM(1.0) + ALL together. Our data demonstrated that PM(1.0) + ALL together exhibited the greatest capacity to induce A549 cells to enhance the expression of IL-4 and IL-5 compared with the only PM(1.0) or ALL treatment. Interestingly, IL-13 that is necessary for allergen-induced airway hyper responsiveness, is increased in cells treated with PM(1.0) + ALL together, but is higher expressed when the cells are treated only with the allergen. Our data support the hypothesis that the urban environment damage the acinar lung units and activates cells of the immune system

    Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium

    No full text
    Crenothrix polyspora Cohn 1870 and Clonothrix fusca Roze 1896 are two filamentous, sheathed microorganisms exhibiting complex morphological differentiation, whose phylogeny and physiology have been obscure for a long time due to the inability to cultivate them. Very recently, DNA sequencing data from uncultured C. polyspora-enriched material have suggested that Crenothrix is a methane-oxidizing gamma-proteobacterium (39). In contrast, the possible ecological function of C. fusca, originally considered a developmental stage of C. polyspora, is unknown. In this study, temporal succession of two filamentous, sheathed microorganisms resembling Cohn’s Crenothrix and Roze’s Clonothrix was observed by analyzing the microbial community of an artesian well by optical microscopy. Combined culture-based and culture-independent approaches enabled us to assign C. fusca to a novel subgroup of methane-oxidizing gamma-proteobacteria distinct from that of C. polyspora. This assignment was supported by (i) methane uptake and assimilation experiments, (ii) ultrastructural data showing the presence in C. fusca cytoplasm of an elaborate membrane system resembling that of methanotrophic gamma-proteobacteria, and (iii) sequencing data demonstrating the presence in its genome of a methanol dehydrogenase alpha subunit-encoding gene (mxaF) and a conventional particulate methane mono-oxygenase alpha subunit-encoding gene (pmoA) that is different from the unusual pmoA (u-pmoA) of C. polyspora
    corecore