24 research outputs found

    Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA

    Get PDF
    Purpose: To investigate the role of thioredoxin (TRX), a novel regulator of extracellular transglutaminase 2 (TG2), in celiac patients IgA (CD IgA) mediated TG2 enzymatic activation. Methods: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs) under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA) were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. Results: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. Conclusions: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX

    Tissue transglutaminase (TG2) enables survival of human malignant pleural mesothelioma cells in hypoxia

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive tumor linked to environmental/occupational exposure to asbestos, characterized by the presence of significant areas of hypoxia. In this study, we firstly explored the expression and the role of transglutaminase 2 (TG2) in MPM cell adaptation to hypoxia. We demonstrated that cells derived from biphasic MPM express the full-length TG2 variant at higher levels than cells derived from epithelioid MPM and normal mesothelium. We observed a significant induction of TG2 expression and activity when cells from biphasic MPM were grown as a monolayer in chronic hypoxia or packed in spheroids, where the presence of a hypoxic core was demonstrated. We described that the hypoxic induction of TG2 was HIF-2 dependent. Importantly, TGM2-v1 silencing caused a marked and significant reduction of MPM cell viability in hypoxic conditions when compared with normoxia. Notably, a TG2-selective irreversible inhibitor that reacts with the intracellular active form of TG2, but not a non-cell-permeable inhibitor, significantly compromised cell viability in MPM spheroids. Understanding the expression and function of TG2 in the adaptation to the hypoxic environment may provide useful information for novel promising therapeutic options for MPM treatment

    Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten

    Get PDF
    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset
    corecore