222 research outputs found

    In vitro propagation of Hoya wightii ssp. palniensis K.T. Mathew, a highly vulnerable and endemic species of Western Ghats of Tamil Nadu, India

    Get PDF
    In vitro propagation of Hoya wightii ssp. palniensis (Asclepiadaceae), a highly vulnerable and endemic plant species of Western Ghats, Tamil Nadu, India was carried out. Shoot tip explants were cultured on MS medium fortified with cytokinins (KN, BA, 2-iP and TDZ) in various concentrations and in combination with auxins (IBA, IAA and NAA). High frequency of shoot bud proliferation and multiplication was observed on KN (4.65 ìM) + IBA (1.47 ìM). Multiple shoot induction efficiency was increased on ascorbic acid (100 mg/l) supplemented medium along with KN (4.65 ìM) +IBA (1.47 ìM). Rhizogenesis was observed on MS medium supplemented with IBA (0.98 ìM), plantlets produced through micropropagation were hardened with the survival success of 56%. The efficient plantlet regeneration protocol developed would aid ex situ conservation of this vulnerable species

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    Membrane chemical stability and seed longevity

    Get PDF
    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345 K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above Tm for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization

    Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation

    Get PDF
    Knowledge of the function of the cell cycle checkpoints in tumour cells may be important to develop treatment strategies for human cancers. The protein p53 is an important factor that regulates cell cycle progression and apoptosis in response to drugs. In human malignant mesothelioma, p53 is generally not mutated, but may be inactivated by SV40 early region T antigen (SV40 Tag). However, the function of p53 has not been investigated in mesothelioma cells. Here, we investigated the function of the cell cycle checkpoints in six human mesothelioma cell lines (HMCLs) by studying the cell distribution in the different phases of the cell cycle by flow cytometry, and expression of cell cycle proteins, p53, p21WAF1/CIP1 and p27KIP1. In addition, we studied p53 gene mutations and expression of SV40 Tag. After exposure to γ-radiation, HMCLs were arrested either in one or both phases of the cell cycle, demonstrating a heterogeneity in cell cycle control. G1 arrest was p21WAF1/CIP1- and p53-dependent. Lack of arrest in G1 was not related to p53 mutation or binding to SV40 Tag, except in one HMCL presenting a missense mutation at codon 248. These results may help us to understand mesothelioma and develop new treatments

    Interferon-γ and Proliferation Responses to Salmonella enterica Serotype Typhi Proteins in Patients with S. Typhi Bacteremia in Dhaka, Bangladesh

    Get PDF
    Salmonella enterica serotype Typhi infection is a significant global public health problem and the cause of typhoid fever. Salmonella are intracellular pathogens, and cellular immune responses are required to control and clear Salmonella infections. Despite this, there are limited data on cellular immune responses during wild type S. Typhi infection in humans. Here we report the assessment of cellular immune responses in humans with S. Typhi bacteremia through a screening approach that permitted us to evaluate interferon-γ and proliferation responses to a number of S. Typhi antigens. We detected significant interferon-γ CD4 and CD8 responses, as well as proliferative responses, to a number of recombinantly purified S. Typhi proteins as well as membrane preparation in infected patients. Antigen-specific interferon-γ responses were present at the time of clinical presentation in patients and absent in healthy controls. These observations could assist in the development of interferon-γ-based diagnostic assays for typhoid fever

    Characteristics of Different Systems for the Solar Drying of Crops

    Get PDF
    Solar dryers are used to enable the preservation of agricultural crops, food processing industries for dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of complex interactions particular between the intensity and duration of solar energy, the prevailing ambient relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the design and operation of the solar dryer
    corecore