75 research outputs found

    FSHD muscular dystrophy Region Gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis

    Get PDF
    Facioscapulohumeral Muscular Dystrophy (FSHD) is an autosomal dominant myopathy with a strong epigenetic component. It is associated with deletion of a macrosatellite repeat leading to over-expression of the nearby genes. Among them, we focused on FSHD Region Gene 1 (FRG1) since its over-expression in mice, X. laevis and C. elegans leads to muscular dystrophy-like defects, suggesting that FRG1 plays a relevant role in muscle biology. Here we show that, when overexpressed, FRG1 binds and interferes with the activity of the histone methyltransferase Suv4-20h1 both in mammals and Drosophila. Accordingly, FRG1 over-expression or Suv4-20h1 knockdown inhibits myogenesis. Moreover, Suv4-20h KO mice develop muscular dystrophy signs. Finally, we identify the FRG1/Suv4-20h1 target Eid3 as a novel myogenic inhibitor that contributes to the muscle differentiation defects. Our study suggests a novel role of FRG1 as epigenetic regulator of muscle differentiation and indicates that Suv4-20h1 has a gene-specific function in myogenesis

    Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index

    Get PDF
    Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated

    Expression of MAGE-C1/CT7 and MAGE-C2/CT10 Predicts Lymph Node Metastasis in Melanoma Patients

    Get PDF
    MAGE-C1/CT7 and MAGE-C2/CT10 are members of the large MAGE family of cancer-testis (CT) antigens. CT antigens are promising targets for immunotherapy in cancer because their expression is restricted to cancer and germ line cells and a proportion of cancer patients presents with immune responses against CT antigens, which clearly demonstrates their immunogenicity. This study investigates the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary and metastatic melanoma. Immunohistochemical staining of tissue microarrays that consisted of 59 primary malignant melanomas of the skin, 163 lymph node and distant melanoma metastases and 68 melanoma cell lines was performed. We found MAGE-C1/CT7 expression in 15 out of 50 (24%) primary melanomas and 15 out of 50 (24%) cell lines, whereas MAGE-C2/CT10 was detected in 17 out of 51 (33%) primary melanomas and 14 out of 68 (17%) cell lines. MAGE-C1/CT7 and MAGE-C2/CT10 were both detected in 40% of melanoma metastases. Patients with MAGE-C1/CT7 or MAGE-C2/CT10 positive primary melanoma had significantly more lymph node metastases (p = 0.005 and p<0.001, resp.). Prediction of lymph node metastasis by MAGE-C1/CT7 and MAGE-C2/CT10 was independent of tumor cell proliferation rate (Ki67 labeling index) in a multivariate analysis (p = 0.01). Our results suggest that the expression of MAGE-C1/CT7 and MAGE-C2/CT10 in primary melanoma is a potent predictor of sentinel lymph node metastasis

    RNAi Screening Implicates a SKN-1-Dependent Transcriptional Response in Stress Resistance and Longevity Deriving from Translation Inhibition

    Get PDF
    Caenorhabditis elegans SKN-1 (ortholog of mammalian Nrf1/2/3) is critical for oxidative stress resistance and promotes longevity under reduced insulin/IGF-1-like signaling (IIS), dietary restriction (DR), and normal conditions. SKN-1 inducibly activates genes involved in detoxification, protein homeostasis, and other functions in response to stress. Here we used genome-scale RNA interference (RNAi) screening to identify mechanisms that prevent inappropriate SKN-1 target gene expression under non-stressed conditions. We identified 41 genes for which knockdown leads to activation of a SKN-1 target gene (gcs-1) through skn-1-dependent or other mechanisms. These genes correspond to multiple cellular processes, including mRNA translation. Inhibition of translation is known to increase longevity and stress resistance and may be important for DR-induced lifespan extension. One model postulates that these effects derive from reduced energy needs, but various observations suggest that specific longevity pathways are involved. Here we show that translation initiation factor RNAi robustly induces SKN-1 target gene transcription and confers skn-1-dependent oxidative stress resistance. The accompanying increases in longevity are mediated largely through the activities of SKN-1 and the transcription factor DAF-16 (FOXO), which is required for longevity that derives from reduced IIS. Our results indicate that the SKN-1 detoxification gene network monitors various metabolic and regulatory processes. Interference with one of these processes, translation initiation, leads to a transcriptional response whereby SKN-1 promotes stress resistance and functions together with DAF-16 to extend lifespan. This stress response may be beneficial for coping with situations that are associated with reduced protein synthesis
    • …
    corecore