1,639 research outputs found

    Does Uptake of Pharmaceuticals Vary Across Earthworm Species?

    Get PDF
    This study compared the uptake and depuration of four commonly used pharmaceuticals (carbamazepine, diclofenac, fluoxetine and orlistat) in two earthworm species (Lumbricus terrestris and Eisenia fetida). L. terrestris are a larger species and often found in deep burrows whereas E. fetida prefer to reside near the soil surface. Species burrowing habits and sizes may alter uptake by earthworms. All four pharmaceuticals were taken up into both L. terrestris and E. fetida tissue after 21 days exposure to spiked soil. Bioconcentration factors (BCFs) ranged between 1.72 and 29.83 for L. terrestris and 1.14 and 63.03 for E. fetida. For carbamazepine and diclofenac, BCFs were similar whereas for fluoxetine and orlistat, BCFs in E. fetida were more than double those seen in L. terrestris. Results indicate that uptake into earthworms cannot be generalised between species and that the influence of species traits can vary depending on the nature of the study chemical

    Where to put your best foot forward: Psycho-physiological responses to walking in natural and urban environments

    Get PDF
    © 2015 Elsevier Ltd. There is convergent evidence that natural environments allow restoration from stress. This randomised, cross-over, field-based trial compared psychological and physiological r esponses of unstressed individuals to self-paced 30-min walks in three pleasant environments: residential (urban), natural (green), and natural with water (blue). Changes from baseline (T1) to T2 (end of 30-min walk), and T3 (30 min after leaving environment) were measured in terms of mood, cognitive function, restoration experiences, salivary cortisol, and heart rate variability (HRV). In the final sample (n = 38; 65% male; mean age 40.9 ± 17.6 years), mood and cortisol improved at T2 and T3 in all environments. Green and blue environments were associated with greater restoration experiences, and cognitive function improvements that persisted at T3. Stress reduction (mood and cortisol changes) in all environments points to the salutogenic effect of walking, but natural environments conferred additional cognitive benefits lasting at least 30 min after leaving the environment

    Undifferentiated spondyloarthritis following allogeneic stem cell transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stem cell transplant has been utilized in the treatment of malignancies and rheumatic disease. Rheumatic disease may be transferred from the donor with active disease or may be developed in a recipient de novo as a late complication of SCT.</p> <p>Case Presentation</p> <p>We here report the rare case of a 26-year old male patient, who has been diagnosed with undifferentiated spondyloarthropathy after unique circumstance. The patient suffered from intermittent inflammatory back pain and peripheral joint swelling for several years and did not find relief through multiple emergency room visits at different medical facilities. After a thorough history and physical exam, it was noted that our patient had developed signs of axial disease along with dactylitis and overall that he had been insidiously developing an undifferentiated spondyloarthopathy after allogeneic stem cell transplantation.</p> <p>Conclusion</p> <p>Our observation supports the hypothesis that de novo rheumatic disease can develop after stem cell transplant for a variety of reasons. Thus, larger studies and awareness of this association are needed to delineate the exact underlying mechanism(s).</p

    Estrogen as therapy for breast cancer

    Get PDF
    High-dose estrogen was generally considered the endocrine therapy of choice for postmenopausal women with breast cancer prior to the introduction of tamoxifen. Subsequently, the use of estrogen was largely abandoned. Recent clinical trial data have shown clinically meaningful efficacy for high-dose estrogen even in patients with extensive prior endocrine therapy. Preclinical research has demonstrated that the estrogen dose-response curve for breast cancer cells can be shifted by modification of the estrogen environment. Clinical and laboratory data together provide the basis for developing testable hypotheses of management strategies, with the potential of increasing the value of endocrine therapy in women with breast cancer

    Consequences of converting graded to action potentials upon neural information coding and energy efficiency

    Get PDF
    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ~50% in generator potentials, to ~3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Laguerre-Gaussian wave propagation in parabolic media

    Full text link
    We report a new set of Laguerre-Gaussian wave-packets that propagate with periodical self-focusing and finite beam width in weakly guiding inhomogeneous media. These wave-packets are solutions to the paraxial form of the wave equation for a medium with parabolic refractive index. The beam width is defined as a solution of the Ermakov equation associated to the harmonic oscillator, so its amplitude is modulated by the strength of the medium inhomogeneity. The conventional Laguerre-Gaussian modes, available for homogenous media, are recovered as a particular case.Comment: 11 pages, 5 figure

    Leukocyte capture and modulation of cell-mediated immunity during human sepsis: An ex vivo study

    Get PDF
    Introduction: Promising preclinical results have been obtained with blood purification therapies as adjuvant treatment for sepsis. However, the mechanisms by which these therapies exert beneficial effects remain unclear. Some investigators have suggested that removal of activated leukocytes from the circulation might help ameliorate remote organ injury. We designed an extracorporeal hemoadsorption device capable of capturing both cytokines and leukocytes in order to test the hypothesis that leukocyte capture would alter circulating cytokine profiles and influence immunological cell-cell interactions in whole blood taken from patients with sepsis.Methods: We performed a series of ex vivo studies in 21 patients with septic shock and 12 healthy volunteers. Blood circulated for four hours in closed loops with four specially designed miniaturized extracorporeal blood purification devices including two different hemoadsorption devices and a hemofilter in order to characterize leukocyte capture and to assess the effects of leukocyte removal on inflammation and immune function. Results: Hemoadsorption was selective for removal of activated neutrophils and monocytes. Capture of these cells led to local release of certain cytokines, especially IL-8, and resulted in complex cell-cell interactions involved in cellmediated immunity. Inhibition of cell adherence reversed the cytokine release and the effects on lymphocyte function. Conclusions: Monocyte and neutrophil capture using a sorbent polymer results in upregulation of IL-8 and modulation of cell-mediated immunity. Further studies are needed to understand better these cellular interactions in order to help design better blood purification therapies. © 2013 Rimmelé et al.; licensee BioMed Central Ltd

    Unique domain appended to vertebrate tRNA synthetase is essential for vascular development

    Get PDF
    New domains were progressively added to cytoplasmic aminoacyl transfer RNA (tRNA) synthetases during evolution. One example is the UNE-S domain, appended to seryl-tRNA synthetase (SerRS) in species that developed closed circulatory systems. Here we show using solution and crystal structure analyses and in vitro and in vivo functional studies that UNE-S harbours a robust nuclear localization signal (NLS) directing SerRS to the nucleus where it attenuates vascular endothelial growth factor A expression. We also show that SerRS mutants previously linked to vasculature abnormalities either deleted the NLS or have the NLS sequestered in an alternative conformation. A structure-based second-site mutation, designed to release the sequestered NLS, restored normal vasculature. Thus, the essential function of SerRS in vascular development depends on UNE-S. These results are the first to show an essential role for a tRNA synthetase-associated appended domain at the organism level, and suggest that acquisition of UNE-S has a role in the establishment of the closed circulatory systems of vertebrates
    corecore