502 research outputs found
Gigahertz repetition rate thermionic electron gun concept
We present a novel concept for the generation of gigahertz repetition rate
high brightness electron bunches. A custom design 100 kV thermionic gun
provides a continuous electron beam, with the current determined by the
filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam
across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to
this cavity results in a flattened magnetic field profile which increases the
duty cycle to 30%. Finally, a compression cavity induces a negative
longitudinal velocity-time chirp in a bunch, initiating ballistic compression.
Adding a higher harmonic mode to this cavity increases the linearity of this
chirp and thus decreases the final bunch length. Charged particle simulations
show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can
create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of
0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure
Cavity-enhanced photoionization of an ultracold rubidium beam for application in focused ion beams
A two-step photoionization strategy of an ultracold rubidium beam for
application in a focused ion beam instrument is analyzed and implemented. In
this strategy the atomic beam is partly selected with an aperture after which
the transmitted atoms are ionized in the overlap of a tightly cylindrically
focused excitation laser beam and an ionization laser beam whose power is
enhanced in a build-up cavity. The advantage of this strategy, as compared to
without the use of a build-up cavity, is that higher ionization degrees can be
reached at higher currents. Optical Bloch equations including the
photoionization process are used to calculate what ionization degree and
ionization position distribution can be reached. Furthermore, the ionization
strategy is tested on an ultracold beam of Rb atoms. The beam current is
measured as a function of the excitation and ionization laser beam intensity
and the selection aperture size. Although details are different, the global
trends of the measurements agree well with the calculation. With a selection
aperture diameter of 52 m, a current of pA is
measured, which according to calculations is 63% of the current equivalent of
the transmitted atomic flux. Taking into account the ionization degree the ion
beam peak reduced brightness is estimated at A/(msreV).Comment: 13 pages, 9 figure
High quality ultrafast transmission electron microscopy using resonant microwave cavities
Ultrashort, low-emittance electron pulses can be created at a high repetition
rate by using a TM deflection cavity to sweep a continuous beam across
an aperture. These pulses can be used for time-resolved electron microscopy
with atomic spatial and temporal resolution at relatively large average
currents. In order to demonstrate this, a cavity has been inserted in a
transmission electron microscope, and picosecond pulses have been created. No
significant increase of either emittance or energy spread has been measured for
these pulses.
At a peak current of pA, the root-mean-square transverse normalized
emittance of the electron pulses is m rad in the direction parallel to the streak of the cavity, and
m rad in the perpendicular
direction for pulses with a pulse length of 1.1-1.3 ps. Under the same
conditions, the emittance of the continuous beam is
m rad.
Furthermore, for both the pulsed and the continuous beam a full width at half
maximum energy spread of eV has been measured
- …