46,176 research outputs found

    Supersonic turbulent boundary-layer flows with mass injection through slots and/or porous walls

    Get PDF
    An implicit finite-difference method was used to solve the compressible boundary-layer equations, and to study the effects of mass transfer through porous plates, slots, and a combination of the two. The effects of the external pressure field were also included by using a global pressure interaction scheme. Two different eddy viscosity models were used for the slot and slot-porous combination cases: one was a two-layer model with inner and outer laws, and the other was a multi-layer model with as many as five separate layers. Results of the present method were compared with experimental data at a Mach number of 2.8. Comparisons of the skin friction reduction and Mach number profiles gave good to excellent agreement. Pressure interaction had little effect on the slot injection skin friction but increased the skin friction of the porous and slot-porous combination markedly

    Improving irrigation management through better information: Testing practical options in Indonesia

    Get PDF
    Information services / Irrigable land / Performance evaluation / Monitoring / Water users' associations / Water allocation / Irrigation management / Irrigated sites / Water delivery / Economic aspects / Benefits / Mapping / Labor / Indonesia / West Java / Cerebon

    Probing the evolution of Stark wave packets by a weak half cycle pulse

    Full text link
    We probe the dynamic evolution of a Stark wave packet in cesium using weak half-cycle pulses (HCP's). The state-selective field ionization(SSFI) spectra taken as a function of HCP delay reveal wave packet dynamics such as Kepler beats, Stark revivals and fractional revivals. A quantum-mechanical simulation explains the results as multi-mode interference induced by the HCP.Comment: 4 pages, incl. 3 figures, submitted to PR

    Matrix partitioning and EOF/principal component analysis of Antarctic Sea ice brightness temperatures

    Get PDF
    A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed

    A moving cold front in the intergalactic medium of A3667

    Get PDF
    We present results from a Chandra observation of the central region of the galaxy cluster A3667, with emphasis on the prominent sharp X-ray brightness edge spanning 0.5 Mpc near the cluster core. Our temperature map shows large-scale nonuniformities characteristic of the ongoing merger, in agreement with earlier ASCA results. The brightness edge turns out to be a boundary of a large cool gas cloud moving through the hot ambient gas, very similar to the "cold fronts" discovered by Chandra in A2142. The higher quality of the A3667 data allows the direct determination of the cloud velocity. At the leading edge of the cloud, the gas density abruptly increases by a factor of 3.9+-0.8, while the temperature decreases by a factor of 1.9+-0.2 (from 7.7 keV to 4.1 keV). The ratio of the gas pressures inside and outside the front shows that the cloud moves through the ambient gas at near-sonic velocity, M=1+-0.2 or v=1400+-300 km/s. In front of the cloud, we observe the compression of the ambient gas with an amplitude expected for such a velocity. A smaller surface brightness discontinuity is observed further ahead, ~350 kpc in front of the cloud. We suggest that it corresponds to a weak bow shock, implying that the cloud velocity may be slightly supersonic. Given all the evidence, the cold front appears to delineate the remnant of a cool subcluster that recently has merged with A3667. The cold front is remarkably sharp. The upper limit on its width, 3.5 arcsec or 5 kpc, is several times smaller than the Coulomb mean free path. This is a direct observation of suppression of the transport processes in the intergalactic medium, most likely by magnetic fields.Comment: Submitted to ApJ. 9 pages with embedded color figures, uses emulateapj5. Postscript with higher quality figures is available at http://hea-www.harvard.edu/~alexey/a3667-hydro.ps.g

    Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    Get PDF
    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be `read' out.Comment: 4 pages, 4 figure

    Plasma Electron Beam Welder for Space Vehicles Final Report

    Get PDF
    Feasibility of developing plasma electron beam welding system for earth orbiting vehicl

    Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    Full text link
    For G(R)G(\mathbb{R}) a split, simply connected, semisimple Lie group of rank nn and KK the maximal compact subgroup of GG, we give a method for computing Iwasawa coordinates of G/KG/K using the Chevalley generators and the Steinberg presentation. When G/KG/K is a scalar coset for a supergravity theory in dimensions ≥3\geq 3, we determine the action of the integral form G(Z)G(\mathbb{Z}) on G/KG/K. We give explicit results for the action of the discrete UU--duality groups SL2(Z)SL_2(\mathbb{Z}) and E7(Z)E_7(\mathbb{Z}) on the scalar cosets SL2(R)/SO2(R)SL_2(\mathbb{R})/SO_2(\mathbb{R}) and E7(+7)(R)/[SU(8,R)/{±Id}]E_{7(+7)}(\mathbb{R})/[SU(8,\mathbb{R})/\{\pm Id\}] for type IIB supergravity in ten dimensions and 11--dimensional supergravity in D=4D=4 dimensions, respectively. For the former, we use this to determine the discrete U--duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum--generating symmetry group for fundamental BPS solitons of type IIB supergravity in D=10D=10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U--duality groups in general

    Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56

    Full text link
    We compare new maps of the hot gas, dark matter, and galaxies for 1E0657-56, a cluster with a rare, high-velocity merger occurring nearly in the plane of the sky. The X-ray observations reveal a bullet-like gas subcluster just exiting the collision site. A prominent bow shock gives an estimate of the subcluster velocity, 4500 km/s, which lies mostly in the plane of the sky. The optical image shows that the gas lags behind the subcluster galaxies. The weak-lensing mass map reveals a dark matter clump lying ahead of the collisional gas bullet, but coincident with the effectively collisionless galaxies. From these observations, one can directly estimate the cross-section of the dark matter self-interaction. That the dark matter is not fluid-like is seen directly in the X-ray -- lensing mass overlay; more quantitative limits can be derived from three simple independent arguments. The most sensitive constraint, sigma/m<1 cm^2/g, comes from the consistency of the subcluster mass-to-light ratio with the main cluster (and universal) value, which rules out a significant mass loss due to dark matter particle collisions. This limit excludes most of the 0.5-5 cm^2/g interval proposed to explain the flat mass profiles in galaxies. Our result is only an order-of-magnitude estimate which involves a number of simplifying, but always conservative, assumptions; stronger constraints may be derived using hydrodynamic simulations of this cluster.Comment: Text clarified; some numbers changed slightly for consistency with final version of the accompanying lensing paper. 6 pages, uses emulateapj. ApJ in pres
    • …
    corecore