1,626 research outputs found

    Cytochrome P450 CYP1B1 activity in renal cell carcinoma

    Get PDF
    Renal cell carcinoma (RCC) is the most common malignancy of the kidney and has a poor prognosis due to its late presentation and resistance to current anticancer drugs. One mechanism of drug resistance, which is potentially amenable to therapeutic intervention, is based on studies in our laboratory. CYP1B1 is a cytochrome P450 enzyme overexpressed in a variety of malignant tumours. Our studies are now elucidating a functional role for CYP1B1 in drug resistance. Cytochrome P450 reductase (P450R) is required for optimal metabolic activity of CYP1B1. Both CYP1B1 and P450R can catalyse the biotransformation of anticancer drugs at the site of the tumour. In this investigation, we determined the expression of CYP1B1 and P450R in samples of normal kidney and RCC (11 paired normal and tumour and a further 15 tumour samples). The O-deethylation of ethoxyresorufin to resorufin was used to measure CYP1B1 activity in RCC. Cytochrome P450 reductase activity was determined by following the reduction of cytochrome c at 550 nm. The key finding of this study was the presence of active CYP1B1 in 70% of RCC. Coincubation with the CYP1B1 inhibitor alpha-naphthoflavone (10nM) inhibited this activity. No corresponding CYP1B1 activity was detected in any of the normal tissue examined (n = 11). Measurable levels of active P450R were determined in all normal (n = 11) and tumour samples (n = 26). The presence of detectable CYP1B1, which is capable of metabolising anticancer drugs in tumour cells, highlights a novel target for therapeutic intervention

    Expression Profiling of CYP1B1 in Oral Squamous Cell Carcinoma: Counterintuitive Downregulation in Tumors

    Get PDF
    Oral Squamous Cell Carcinoma (OSCC) has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy. CYP1B1, a member of cytochrome P450 family, has been implicated in chemical carcinogenesis. There exists a general accordance that this protein is overexpressed in a variety of cancers, making it an ideal candidate for a prodrug therapy. The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits. This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This report therefore clearly demonstrates the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers and also suggest the possibility of a prophylactic therapy for oral cancer

    Application of the Ulva pertusa bioassay for a toxicity identification evaluation and reduction of effluent from a wastewater treatment plant

    Get PDF
    A toxicity identification evaluation (TIE) based on Ulva pertusa spore release was conducted in 3 phases for the identification of the major toxicants in effluent from a wastewater treatment plant (WTP) and the receiving water in an adjacent stream. The toxicity of the final effluent (FE), as compared with raw wastewater, and primary and secondary effluent, showed a greater change over 12-monthly sampling events and appeared to have impacts on the toxicity of the downstream water with a significant correlation (r 2 = 0.89, p < 0.01). In Phase I, toxicity characterization indicated that cations were likely to be the responsible toxicants for the FE. In Phase II, cations such as Cu, Ni, and Zn were found in the FE at higher concentrations than the EC 50 concentrations determined for the standard corresponding metals. When the concentrations of each metal in the FE samples were plotted against the respective toxicity units, only zinc showed a statistically significant correlation with toxicity (r 2 = 0.86, p < 0.01). In Phase III, using spiking and mass balance approaches, it was confirmed that Zn was the major toxicant in the effluent from the WTP. Following a change in the Fenton reagent used, to one with a lower Zn content, the toxicity of the FE greatly decreased in subsequent months. The TIE developed here enabled the toxicity of FEs of the WTP to be tracked and for Zn, originating from a reagent used for Fenton treatment, to be successfully identified as the key toxicant. The TIE method based on U. pertusa demonstrated utility as a low cost and simple tool to identify the risk factors for industrial effluents and provided information on regulatory control and management

    Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania

    Get PDF
    Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US11,841andtothepatientsthemselvesatUS 11,841 and to the patients themselves at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services

    Flow through a circular tube with a permeable Navier slip boundary

    Get PDF
    For Newtonian fluid flow in a right circular tube, with a linear Navier slip boundary, we show that a second flow field arises which is different to conventional Poiseuille flow in the sense that the corresponding pressure is quadratic in its dependence on the length along the tube, rather than a linear dependence which applies for conventional Poiseuille flow. However, assuming that the quadratic pressure is determined, say from known experimental data, then the new solution only exists for a precisely prescribed permeability along the boundary. While this cannot occur for conventional pipe flow, for fluid flow through carbon nanotubes embedded in a porous matrix, it may well be an entirely realistic possibility, and could well explain some of the high flow rates which have been reported in the literature. Alternatively, if the radial boundary flow is prescribed, then the new flow field exists only for a given quadratic pressure. Our primary purpose here is to demonstrate the existence of a new pipe flow field for a permeable Navier slip boundary and to present a numerical solution and two approximate analytical solutions. The maximum flow rate possible for the new solution is precisely twice that for the conventional Poiseuille flow, which occurs for constant inward directed flow across the boundary

    Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer

    Get PDF
    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a limited (n=33) number of patients. Broad-spectrum matrix metalloproteinase activity and both the active and latent forms of the gelatinases matrix metalloproteinase-2 and -9 were higher in tumour than in normal mucosa. The ratio's between active and latent forms of matrix metalloproteinase-2 and -9 were highest in tumour tissue and normal mucosa, respectively. Matrix metalloproteinase-2 levels, both active and latent forms, correlated inversely with stage of disease, the tumours without synchronous distant metastases containing significantly (P=0.005) more active matrix metalloproteinase-2 than the others. At much lower levels of activity, the same trend was observed in distant normal mucosa. The level of latent form of matrix metalloproteinase-9 in tumour depended on tumour location. Neither the active form of matrix metalloproteinase-9 nor broad-spectrum matrix metalloproteinase activity in tumour tissue did correlate with any of the clinicopathological parameters investigated. The results demonstrate explicit differences between the activity of matrix metalloproteinase-2 and -9, indicating different roles for both gelatinases in tumour progression. Such data are necessary in order to develop rational anti-cancer therapies based on inhibition of specific matrix metalloproteinases
    corecore