644 research outputs found

    Skyrmions in Higher Landau Levels

    Full text link
    We calculate the energies of quasiparticles with large numbers of reversed spins (``skyrmions'') for odd integer filling factors 2k+1, k is greater than or equals 1. We find, in contrast with the known result for filling factor equals 1 (k = 0), that these quasiparticles always have higher energy than the fully polarized ones and hence are not the low energy charged excitations, even at small Zeeman energies. It follows that skyrmions are the relevant quasiparticles only at filling factors 1, 1/3 and 1/5.Comment: 10 pages, RevTe

    The neutral hydrogen cosmological mass density at z = 5

    Get PDF
    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, ΩHi. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on ΩHi. We find ΩHI=0.98+0.20−0.18×10−3 at 〈z〉 = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that ΩHi can be described by the functional form ΩHI(z)∝(1+z)0.4. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds

    Autism community research priorities: the potential of future research to benefit autistics

    Get PDF
    Despite the enormous amounts of money spent on autism research, there has been little focus to date on what members of the autistic community believe should be prioritised by autism researchers. Our systematic review of the literature identified three published studies that had developed wide-ranging autism research priority sets. We undertook an in-depth analysis of these priorities sets to determine whether research focused on each priority had the potential to benefit the well-being of and/or emancipate autistic individuals. For this purpose, we used published ‘inclusive research’ criteria. We also compared the three sets of autism research priorities in the context of autistic well-being and emancipation. Our findings demonstrated substantial differences between the priorities in the studies in terms of whether they might benefit and/or be emancipatory for autistic people. Autistic people were a small minority of participants in studies where participant numbers had been recorded. There has yet to be a study focused solely on understanding the autism research priorities of autistic adults

    Anisotropic Transport of Quantum Hall Meron-Pair Excitations

    Full text link
    Double-layer quantum Hall systems at total filling factor ÎœT=1\nu_T=1 can exhibit a commensurate-incommensurate phase transition driven by a magnetic field B∄B_{\parallel} oriented parallel to the layers. Within the commensurate phase, the lowest charge excitations are believed to be linearly-confined Meron pairs, which are energetically favored to align with B∄B_{\parallel}. In order to investigate this interesting object, we propose a gated double-layer Hall bar experiment in which B∄B_{\parallel} can be rotated with respect to the direction of a constriction. We demonstrate the strong angle-dependent transport due to the anisotropic nature of linearly-confined Meron pairs and discuss how it would be manifested in experiment.Comment: 4 pages, RevTex, 3 postscript figure

    Collective Modes of Soliton-Lattice States in Double-Quantum-Well Systems

    Full text link
    In strong perpendicular magnetic fields double-quantum-well systems can sometimes occur in unusual broken symmetry states which have interwell phase coherence in the absence of interwell hopping. When hopping is present in such systems and the magnetic field is tilted away from the normal to the quantum well planes, a related soliton-lattice state can occur which has kinks in the dependence of the relative phase between electrons in opposite layers on the coordinate perpendicular to the in-plane component of the magnetic field. In this article we evaluate the collective modes of this soliton-lattice state in the generalized random-phase aproximation. We find that, in addition to the Goldstone modes associated with the broken translational symmetry of the soliton-lattice state, higher energy collective modes occur which are closely related to the Goldstone modes present in the spontaneously phase-coherent state. We study the evolution of these collective modes as a function of the strength of the in-plane magnetic field and comment on the possibility of using the in-plane field to generate a finite wave probe of the spontaneously phase-coherent state.Comment: REVTEX, 37 pages (text) and 15 uuencoded postscript figure

    Quantum Ferromagnetism and Phase Transitions in Double-Layer Quantum Hall Systems

    Full text link
    Double layer quantum Hall systems have interesting properties associated with interlayer correlations. At Îœ=1/m\nu =1/m where mm is an odd integer they exhibit spontaneous symmetry breaking equivalent to that of spin 1/21/2 easy-plane ferromagnets, with the layer degree of freedom playing the role of spin. We explore the rich variety of quantum and finite temperature phase transitions in these systems. In particular, we show that a magnetic field oriented parallel to the layers induces a highly collective commensurate-incommensurate phase transition in the magnetic order.Comment: 4 pages, REVTEX 3.0, IUCM93-013, 1 FIGURE, hardcopy available from: [email protected]

    Reference points for predators will progress ecosystem-based management of fisheries.

    Get PDF
    Ecosystem-based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem-based management in six case study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case studies 58 include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem-based management

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around Μ=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques
    • 

    corecore