496 research outputs found
Structural response of Caribbean dry forests to hurricane winds: a case study from Guanica Forest, Puerto Rico
Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance.
Methods: Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics.
Results: Direct effects of the hurricane were minimal, with stem mortality at \u3c 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high . over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (\u3e 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main Conclusions: Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi-stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short-term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds
High speed video capture for mobile phone cameras
We consider an electromechanical model for the operation of a voice coil motor in a mobile phone camera, with the aim of optimizing how a lens can be moved to a desired focusing motion. Although a methodology is developed for optimizing lens shift, there is some concern about the experimentally-determined model parameters that are at our disposal. Central to the model is the value of the estimated magnetic force constant, Kf: its value determines how far it is actually possible to move lens, but it appears that, from the value given, it would not be possible to shift the lens through the displacements desired. Furthermore, earlier experiments have also estimated the value of the back EMF constant, Kg , to be roughly five times greater than Kf, even though we present two theoretical arguments that show that Kf = Kg: a conclusion supported by readily-available manufacturers’ data
The outer halos of elliptical galaxies
Recent progress is summarized on the determination of the density
distributions of stars and dark matter, stellar kinematics, and stellar
population properties, in the extended, low surface brightness halo regions of
elliptical galaxies. With integral field absorption spectroscopy and with
planetary nebulae as tracers, velocity dispersion and rotation profiles have
been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the
outer edge at ~150 kpc. The results are generally consistent with the known
dichotomy of elliptical galaxy types, but some galaxies show more complex
rotation profiles in their halos and there is a higher incidence of
misalignments, indicating triaxiality. Dynamical models have shown a range of
slopes for the total mass profiles, and that the inner dark matter densities in
ellipticals are higher than in spiral galaxies, indicating earlier assembly
redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals
and comparison with dynamical mass determinations indicates that non-thermal
components to the pressure may be important in the inner ~10 kpc, and that the
properties of these systems are closely related to their group environments.
First results on the outer halo stellar population properties do not yet give a
clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances
indicate longer star formation histories pointing towards late accretion of the
halo. This is consistent with independent evidence for on-going accretion, and
suggests a connection to the observed size evolution of elliptical galaxies
with redshift.Comment: 8 pages. Invited review to appear in the proceedings of "Galaxies and
their Masks" eds. Block, D.L., Freeman, K.C. & Puerari, I., 2010, Springer
(New York
Time capsules of biodiversity: Future research directions for groundwater-dependent ecosystems of the Great Artesian Basin
The Great Artesian Basin of Australia represents one of the largest and deepest basins of freshwater on Earth. Thousands of springs fed by the Basin are scattered across Australia’s arid zone, often representing the sole sources of freshwater for thousands of kilometers. As “islands” in the desert, the springs support endemic fauna and flora that have undergone millions of years of evolution in almost total isolation. Here, we review the current body of knowledge surrounding Great Artesian Basin springs and their significance from ecological, evolutionary, and cultural perspectives using South Australian spring wetlands as a case study. We begin by identifying the status of these springs as critical sources of groundwater, the unique biodiversity they support, and their cultural significance to the Arabana people as Traditional Custodians of the land. We then summarize known threats to the springs and their biota, both exogenous and endogenous, and the potential impacts of such processes. Finally, considering the status of these at-risk habitats as time capsules of biodiversity, we discuss lessons that can be learnt from current conservation and management practices in South Australia. We propose key recommendations for improved biodiversity assessment and monitoring of Great Artesian Basin springs nationwide, including 1) enhanced legal protections for spring biota; 2) increased taxonomic funding and capacity; 3) improved biodiversity monitoring methods, and 4) opportunities for reciprocal knowledge-sharing with Aboriginal peoples when conducting biodiversity research.P. G. Beasley-Hall, N. P. Murphy, R. A. King, N. E. White, B. A. Hedges, S. J. B. Cooper, A. D. Austin, and M. T. Guzi
Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory
As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools
- …