256 research outputs found

    Comparison of topologies on *-algebras of locally measurable operators

    Full text link
    We consider the locally measure topology t(M)t(\mathcal{M}) on the *-algebra LS(M)LS(\mathcal{M}) of all locally measurable operators affiliated with a von Neumann algebra M\mathcal{M}. We prove that t(M)t(\mathcal{M}) coincides with the (o)(o)-topology on LSh(M)={TLS(M):T=T}LS_h(\mathcal{M})=\{T\in LS(\mathcal{M}): T^*=T\} if and only if the algebra M\mathcal{M} is σ\sigma-finite and a finite algebra. We study relationships between the topology t(M)t(\mathcal{M}) and various topologies generated by faithful normal semifinite traces on M\mathcal{M}.Comment: 21 page

    Walker solution for Dzyaloshinskii domain wall in ultrathin ferromagnetic films

    Get PDF
    We analyze the electric current and magnetic field driven domain wall motion in perpendicularly magnetized ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-plane and in-plane uniaxial anisotropies. We obtain exact analytical Walker-type solutions in the form of one-dimensional domain walls moving with constant velocity due to both spin-transfer torques and out-of-plane magnetic field. These solutions are embedded into a larger family of propagating solutions found numerically. Within the considered model, we find the dependencies of the domain wall velocity on the material parameters and demonstrate that adding in-plane anisotropy may produce domain walls moving with velocities in excess of 500 m/s in realistic materials under moderate fields and currents.Comment: 6 pages, 2 figure

    Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids

    Full text link
    The Challenger disaster and purposeful experiments with liquid hydrogen (H2) and oxygen (Ox) tanks demonstrated that cryogenic H2/Ox fluids always self-ignite in the process of their mixing. Here we propose a cavitation-induced self-ignition mechanism that may be realized under these conditions. In one possible scenario, self-ignition is caused by the strong shock waves generated by the collapse of pure Ox vapor bubble near the surface of the Ox liquid that may initiate detonation of the gaseous H2/Ox mixture adjacent to the gas-liquid interface. This effect is further enhanced by H2/Ox combustion inside the collapsing bubble in the presence of admixed H2 gas

    Synthesis and characterisation of nanocrystalline ZrN PVD coatings on AISI 430 stainless steel

    Get PDF
    The nanocrystalline films of zirconium nitride have been synthesized using ion-plasma vacuum-arc deposition technique in combination with high-frequency discharge (RF) on AISI 430 stainless steel at 150oC. Structure examinations X-ray fluorescent analysis (XRF), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) with microanalysis (EDS), and transmission electron microscopy (TEM), nanoidentation method – were performed to study phase and chemical composition, surface morphology, microstructure and nanohardness of coatings. The developed technology provided low-temperature coatings synthesis, minimized discharge breakdown decreasing formation of macroparticles (MPs) and allowed to deposit ZrN coatings with hardness variation 26.6…31.5 GPa. It was revealed that ZrN single-phase coatings of cubic modification with finecrystalline grains of 20 nm in size were formed

    Magnetic Skyrmions Under Confinement

    Get PDF
    We present a variational treatment of confined magnetic skyrmions in a minimal micromagnetic model of ultrathin ferromagnetic films with interfacial Dzylashinksii-Moriya interaction (DMI) in competition with the exchange energy, with a possible addition of perpendicular magnetic anisotropy. Under Dirichlet boundary conditions that are motivated by the asymptotic treatment of the stray field energy in the thin film limit we prove existence of topologically non-trivial energy minimizers that concentrate on points in the domain as the DMI strength parameter tends to zero. Furthermore, we derive the leading order non-trivial term in the Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Γ\Gamma \end{document}-expansion of the energy in the limit of vanishing DMI strength that allows us to completely characterize the limiting magnetization profiles and interpret them as particle-like states whose radius and position are determined by minimizing a renormalized energy functional. In particular, we show that in our setting the skyrmions are strongly repelled from the domain boundaries, which imparts them with stability that is highly desirable for applications. We provide explicit calculations of the renormalized energy for a number of basic domain geometries

    Direct Evidence of Two Superconducting Gaps in FeSe0.5_{0.5}Te0.5_{0.5}: SnS-Andreev Spectroscopy and Lower Critical Field

    Full text link
    We present direct measurements of the superconducting order parameter in nearly optimal FeSe0.5_{0.5}Te0.5_{0.5} single crystals with critical temperature TC14T_C \approx 14 K. Using intrinsic multiple Andreev reflection effect (IMARE) spectroscopy and measurements of lower critical field, we directly determined two superconducting gaps, ΔL3.33.4\Delta_L \approx 3.3 - 3.4 meV and ΔS1\Delta_S \approx 1 meV, and their temperature dependences. We show that a two-band model fits well the experimental data. The estimated electron-boson coupling constants indicate a strong intraband and a moderate interband interaction

    Scenarios of domain pattern formation in a reaction-diffusion system

    Full text link
    We performed an extensive numerical study of a two-dimensional reaction-diffusion system of the activator-inhibitor type in which domain patterns can form. We showed that both multidomain and labyrinthine patterns may form spontaneously as a result of Turing instability. In the stable homogeneous system with the fast inhibitor one can excite both localized and extended patterns by applying a localized stimulus. Depending on the parameters and the excitation level of the system stripes, spots, wriggled stripes, or labyrinthine patterns form. The labyrinthine patterns may be both connected and disconnected. In the the stable homogeneous system with the slow inhibitor one can excite self-replicating spots, breathing patterns, autowaves and turbulence. The parameter regions in which different types of patterns are realized are explained on the basis of the asymptotic theory of instabilities for patterns with sharp interfaces developed by us in Phys. Rev. E. 53, 3101 (1996). The dynamics of the patterns observed in our simulations is very similar to that of the patterns forming in the ferrocyanide-iodate-sulfite reaction.Comment: 15 pages (REVTeX), 15 figures (postscript and gif), submitted to Phys. Rev.

    Self-replication and splitting of domain patterns in reaction-diffusion systems with fast inhibitor

    Full text link
    An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems is derived. The free boundary problem is reduced to the universal equation of non-local contour dynamics in two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrinthine pattern.Comment: 9 pages (ReVTeX), 5 figures (postscript). To be published in Phys. Rev.

    Influence of Structural Features and Physico-chemical Properties of Metal-carbon Nanocomposites with Ferromagnetic Metal Inclusions on Microwave Radiation

    Get PDF
    Metal-carbon nanocomposites on the basis of polyacrylonitrile and compounds of metals (Fe, Ni, Co) synthesized at IR-heating and studied by SEM, X-ray phase analysis, Raman scattering, IR Fourier spec-troscopy are characterized by the carbon nanostructured amorphous graphite matrix with uniformly dis-tributed nanoparticles of metals (10-30 nm), their oxides and compounds – FeNi3 and FeCo, multilayered carbon nanotubes (~ 7-22 nm), and in the composition of Fe-Co / C fullerene-like formations – C60. All nanocomposites feature high absorption of electromagnetic waves in the frequency range 20-40 GHz. Two absorption mechanisms are proposed: dielectric loss in the amorphous carbon matrix and scattering of electric and magnetic components by ferromagnetic inclusions. Absorption was – 8.68 dB for Fe-Ni / C, – 12.93 dB for Fe / C, and – 7.07 dB for Ni / C and for Fe-Co / C was found to be maximum in the whole range studied (more than – 40 dB) with a peak of – 52.83 dB at 24.27 GHz, which is explained probably by both high nanocomposite electric conductivity 2 S / m and high specific magnetization of phase FeCo. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3625
    corecore