1,471 research outputs found

    Soil carbon pools are affected by species identity and productivity in a tree common garden experiment

    Get PDF
    The formation and turnover of soil organic carbon (C), the largest terrestrial C pool, is strongly impacted by the ultimate source of that C: leaves, wood, roots, and root exudates. The quantity and quality of these inputs is determined by the identity of the plants involved. Yet substantial uncertainty surrounds the complex relationships among plant traits and soil C, precluding efforts to maximize whole-ecosystem C uptake in nature-based climate mitigation scenarios. In this study, we leveraged a biodiversity-ecosystem function experiment with trees (IDENT) to explore the effects of interspecific variation in plant traits on soil C dynamics in the very early stages of stand development (9 years since planting). Mineral soil C stocks to 5 cm depth were quantified in monospecific plots of 19 tree species planted on a former agricultural field, and analyzed in relation to tree growth and functional traits. We found that tree species identity affected soil bulk density and, to a lesser extent, the carbon content of the topsoil, and thereby total C pools. Among species and across plots, mineral soil C stocks were positively correlated with rates of tree growth and were significantly larger beneath broadleaf trees with “fast” functional traits vs. conifers with more conservative leaf traits, when comparisons were made over equivalent soil depth increments. Thus, plant functional traits mediate interspecific differences in productivity, which in turn influence the magnitude of belowground C stocks. These results highlight important linkages between above- and belowground carbon cycles in the earliest stages of afforestation

    Beta-delayed-neutron studies of 135,136^{135,136}Sb and 140^{140}I performed with trapped ions

    Get PDF
    Beta-delayed-neutron (β\betan) spectroscopy was performed using the Beta-decay Paul Trap and an array of radiation detectors. The β\betan branching ratios and energy spectra for 135,136^{135,136}Sb and 140^{140}I were obtained by measuring the time of flight of recoil ions emerging from the trapped ion cloud. These nuclei are located at the edge of an isotopic region identified as having β\betan branching ratios that impact the r-process abundance pattern around the A~130 peak. For 135,136^{135,136}Sb and 140^{140}I, β\betan branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were determined, respectively. The β\betan energy spectra obtained for 135^{135}Sb and 140^{140}I are compared with results from direct neutron measurements, and the β\betan energy spectrum for 136^{136}Sb has been measured for the first time

    Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    Get PDF
    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas

    Effect of formant frequency spacing on perceived gender in pre-pubertal children's voices

    Get PDF
    <div><p>Background</p><p>It is usually possible to identify the sex of a pre-pubertal child from their voice, despite the absence of sex differences in fundamental frequency at these ages. While it has been suggested that the overall spacing between formants (formant frequency spacing - ΔF) is a key component of the expression and perception of sex in children's voices, the effect of its continuous variation on sex and gender attribution has not yet been investigated.</p><p>Methodology/Principal findings</p><p>In the present study we manipulated voice ΔF of eight year olds (two boys and two girls) along continua covering the observed variation of this parameter in pre-pubertal voices, and assessed the effect of this variation on adult ratings of speakers' sex and gender in two separate experiments. In the first experiment (sex identification) adults were asked to categorise the voice as either male or female. The resulting identification function exhibited a gradual slope from male to female voice categories. In the second experiment (gender rating), adults rated the voices on a continuum from “masculine boy” to “feminine girl”, gradually decreasing their masculinity ratings as ΔF increased.</p><p>Conclusions/Significance</p><p>These results indicate that the role of ΔF in voice gender perception, which has been reported in adult voices, extends to pre-pubertal children's voices: variation in ΔF not only affects the perceived sex, but also the perceived masculinity or femininity of the speaker. We discuss the implications of these observations for the expression and perception of gender in children's voices given the absence of anatomical dimorphism in overall vocal tract length before puberty.</p></div
    • …
    corecore