5 research outputs found

    Common envelope ejection in massive binary stars - Implications for the progenitors of GW150914 and GW151226

    No full text
    Context The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. Aims We analyse the common-envelope (CE) stage of the traditional formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in this process. Methods We calculated envelope binding energies of donor stars with initial masses between 4 and 115 M⊙ for metallicities of Z = ZMilky Way ≃ Z⊙=/2 and Z = Z⊙/50, and derived minimum masses of in-spiralling objects needed to eject these envelopes. Results In addition to producing double white dwarf and double neutron star binaries, CE evolution may also produce massive BH-BH systems with individual BH component masses of up to ~50 60 M⊙, in particular for donor stars evolved to giants beyond the Hertzsprung gap. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy, and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Conclusions Massive stars in a wide range of metallicities and with initial masses of up to at least 115 M⊙ may shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate- and low-mass stars with degenerate cores. In addition to being dependent on stellar radius, the envelope binding energies and λ-values also depend on the applied convective core-overshooting parameter, whereas these structure parameters are basically independent of metallicity for stars with initial masses below 60 M⊙. Metal-rich stars≳ 60 M⊙ become luminous blue variables and do not evolve to reach the red giant stage. We conclude that based on stellar structure calculations, and in the view of the usual simple energy budget analysis, events like GW150914 and GW151226 might be produced by the CE channel. Calculations of post-CE orbital separations, however, and thus the estimated LIGO detection rates, remain highly uncertain.</p

    The Common Envelope Evolution Outcome - A Case Study on Hot Subdwarf B Stars

    No full text
    Common envelope evolution (CEE) physics plays a fundamental role in the formation of binary systems, such as mergering stellar gravitational wave sources, pulsar binaries and type Ia supernovae. A precisely constrained CEE has become more important in the age of large surveys and gravitational wave detectors. We use an adiabatic mass loss model to explore how the total energy of the donor changes as a function of the remnant mass. This provides a more self-consistent way to calculate the binding energy of the donor. For comparison, we also calculate the binding energy through integrating the total energy from the core to the surface. The outcome of CEE is constrained by total energy conservation at the point at which both component's radii shrink back within their Roche lobes. We apply our results to 142 hot subdwarf binaries. For shorter orbital period sdBs, the binding energy is highly consistent. For longer orbital period sdBs in our samples, the binding energy can differ by up to a factor of 2. The CE efficiency parameter βCE\beta_\mathrm{CE} becomes smaller than αCE\alpha_\mathrm{CE} for the final orbital period log10Porb/d>0.5\log_{10} P_{\mathrm{orb}}/\mathrm{d} > -0.5. We also find the mass ratios log10q\log_{10} q and CE efficiency parameters log10αCE\log_{10} \alpha_{\mathrm{CE}} and log10βCE\log_{10} \beta_{\mathrm{CE}} linearly correlate in sdBs, similarly to De Marco et al. (2010) for post-AGB binaries

    Formation of double neutron star systems

    No full text
    Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square-Kilometre-Array searching for radio pulsars and high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most 0.02  M\sim 0.02\;M_{\odot}. We investigate DNS masses, spins and velocities, and in particular correlations between spin period, orbital period and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes which may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ\gamma-ray burst

    Asymmetric mass ratios for bright double neutron-star mergers

    Get PDF
    The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event(1,2). Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass(3,4 )could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8)(5), the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass (q> 0.9) binaries(6). The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii(7), and the two neutron stars are predicted to coalesce in 470(-11)(+12) million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 +/- 0.03 and 1.27 +/- 0.03 solar masses, respectively. With a measured mass ratio of q= 0.78 +/- 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event

    Neutron star mergers and how to study them

    No full text
    corecore