10,775 research outputs found

    Brauer group of moduli spaces of pairs

    Get PDF
    We show that the Brauer group of any moduli space of stable pairs with fixed determinant over a curve is zero.Comment: 12 pages. Final version, accepted in Communications in Algebr

    Adiabatic Electron-Phonon Interaction and High-Temperature Thermodynamics of A15 Compounds

    Get PDF
    Inelastic neutron scattering was used to measure the phonon densities of states of the A15 compounds V_3Si, V_3Ge, and V_3Co at temperatures from 10 to 1273 K. It was found that phonons in V_3Si and V_3Ge, which are superconducting at low temperatures, exhibit an anomalous stiffening with increasing temperature, whereas phonons in V_3Co have a normal softening behavior. First-principles calculations show that this anomalous increase in phonon frequencies at high temperatures originates with an adiabatic electron-phonon coupling mechanism. The anomaly is caused by the thermally induced broadening of sharp peaks in the electronic density of states of V_3Si and V_3Ge, which tends to decrease the electronic density at the Fermi level. These results show that the adiabatic electron-phonon coupling can influence the phonon thermodynamics at temperatures exceeding 1000 K

    Investigation of HNCO isomers formation in ice mantles by UV and thermal processing: an experimental approach

    Full text link
    Current gas phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting a formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogues containing H2_2O, NH3_3, CO, HCN, CH3_3OH, CH4_4, and N2_2 followed by warm-up, under astrophysically relevant conditions. Only the H2_2O:NH3_3:CO and H2_2O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H2_2O:NH3_3:CO and H2_2O:HCN ices was simulated using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer (QMS) detected the desorption of the molecules in the gas phase. UV-photoprocessing of H2_2O:NH3_3:CO/H2_2O:HCN ices lead to the formation of OCN^- as main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV-photoprocessing of realistic simulated ice mantles, might explain the observed abundances of these species in PDRs, hot cores, and dark clouds

    The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic centre

    Get PDF
    We report on a detailed study of the spectral and temporal properties of the neutron star low mass X-ray binary SLX 1737-282, which is located only ~1degr away from Sgr A. The system is expected to have a short orbital period, even within the ultra-compact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 years apart. We infer (0.5-10 keV) X-ray luminosities in the range 3-6 x10^35erg s-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) black body component plus a Comptonized emission component with {\Gamma} ~1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ~ 20 per cent fractional root mean square amplitude of the fast variability (0.1 - 7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is >7 keV for the Suzaku observation, but it is measured to be as low as ~2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001 - 7 Hz). Finally, we investigated the origin of the low frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to 65 degr unless the orbital period is longer than 11 hr (i.e. the length of the XMM-Newton observation).Comment: 7 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Electron-phonon interactions and high-temperature thermodynamics of vanadium and its alloys

    Get PDF
    Inelastic neutron scattering was used to measure the phonon densities of states (DOSs) for pure V and solid solutions of V with 6 to 7at% of Co, Nb, and Pt, at temperatures from 10 K to 1323 K. Ancillary measurements of heat capacity and thermal expansion are reported on V and V-7at%Co and used to help identify the different sources of entropy. Pure V exhibits an anomalous anharmonic stiffening of phonons with increasing temperature. This anharmonicity is suppressed by Co and Pt, but not by isoelectronic Nb solutes. The changes in phonon frequency with alloying and with temperature both correlate to the decrease in electron density of states (DOS) at the Fermi level as calculated using density functional theory. The effects of both temperature and alloying can be understood in terms of an adiabatic electron-phonon interaction (EPI), which broadens sharp features in the electron DOS. These results show that the adiabatic EPI can influence the phonon thermodynamics at temperatures exceeding 1000 K, and that thermal trends of phonons may help assess the strength of the EPI

    Langevin equations for reaction-diffusion processes

    Full text link
    For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.Comment: 5 pages + 6 pages supplemental materia

    Sharp values for the constants in the polynomial Bohnenblust-Hille inequality

    Get PDF
    In this paper we prove that the complex polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in C2{\mathbb C}^2 is exactly 324\sqrt[4]{\frac{3}{2}}. We also give the exact value of the real polynomial Bohnenblust-Hille constant for 22-homogeneous polynomials in R2{\mathbb R}^2. Finally, we provide lower estimates for the real polynomial Bohnenblust-Hille constant for polynomials in R2{\mathbb R}^2 of higher degrees.Comment: 16 page

    Nonharmonic phonons in MgB_2 at elevated temperatures

    Get PDF
    Inelastic neutron scattering was used to measure phonon spectra in MgB_2 and Mg_(0.75)Al_(0.25)B_2 from 7 to 750 K to investigate anharmonicity and adiabatic electron-phonon coupling. First-principles calculations of phonons with a linear response method were performed at multiple unit cell volumes, and the Helmholtz free energy was minimized to obtain the lattice parameters and phonon dynamics at elevated temperature in the quasiharmonic approximation. Most of the temperature dependence of the phonon density of states could be understood with the quasiharmonic approximation, although there was also significant thermal broadening of the phonon spectra. In comparison to Mg_(0.75)Al_(0.25)B_2, in the energy range of 60 to 80 meV the experimental phonon spectra from MgB_2 showed a nonmonotonic change with temperature around 500 K. This may originate from a change with temperature of the adiabatic electron-phonon coupling
    corecore