11,064 research outputs found

    A connection between accretion state and Fe K absorption\textit{Fe K absorption} in an accreting neutron star: black hole-like soft state winds?

    Full text link
    High resolution X-ray spectra of accreting stellar mass Black Holes reveal the presence of accretion disc winds, traced by high ionisation Fe K lines. These winds appear to have an equatorial geometry and to be observed only during disc dominated states in which the radio jet is absent. Accreting neutron star systems also show equatorial high ionisation absorbers. However, the presence of any correlation with the accretion state has not been previously tested. We have studied EXO 0748-676, a transient neutron star system, for which we can reliably determine the accretion state, in order to investigate the Fe K absorption/accretion state/jet connection. Not one of twenty X-ray spectra obtained in the hard state revealed any significant Fe K absorption line. However, intense Fe XXV{\scriptsize{\rm XXV}} and Fe XXVI{\scriptsize{\rm XXVI}} (as well as a rarely observed Fe XXIII{\scriptsize{\rm XXIII}} line plus S XVI{\scriptsize{\rm XVI}}; a blend of S XVI{\scriptsize{\rm XVI}} and Ar XVII{\scriptsize{\rm XVII}}; Ca XX{\scriptsize{\rm XX}} and Ca XIX{\scriptsize{\rm XIX}}, possibly produced by the same high ionisation material) absorption lines (EWFe XXIII−XXV=31±3EW_{\rm Fe~{XXIII-XXV}}=31\pm3 eV, EWFe XXVI=8±3EW_{\rm Fe~XXVI}=8\pm3 eV) are clearly detected during the only soft state observation. This suggests that the connection between Fe K absorption and states (and anticorrelation between the presence of Fe K absorption and jets) is also valid for EXO 0748-676 and therefore it is not a unique property of black hole systems but a more general characteristic of accreting sources.Comment: Accepted for publication in MNRAS Letter

    Gravitational lensing and dynamics in SL2S\,J02140-0535: Probing the mass out to large radius

    Full text link
    We aim to probe the mass of SL2S\,J02140-0535, a galaxy group at zz = 0.44 from the Strong Lensing Legacy Survey (SL2S). We combine strong lensing modeling and dynamical constraints. The strong lensing analysis is based on multi-band HST/ACS observations exhibiting strong lensing features that we have followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of an NFW mass profile that cannot be constrained by strong lensing, we propose a new method by taking advantage of the large-scale dynamical information provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. In constrast to other authors, we show that the observed lensing features in SL2S\,J02140-0535 belong to different background sources: one at zz = 1.7 ±\pm 0.1 produces three images, while the other at zz = 1.023 ±\pm 0.001 has only a single image. Our unimodal NFW mass model reproduces these images very well. It is characterized by a concentration parameter c200c_{200} = 6.0 ±\pm 0.6, which is slightly greater than the value expected from Λ\LambdaCDM simulations for a mass of M200_{200} ≈\approx 1 ×\times 1014^{14} M_{\sun}. The spectroscopic analysis of group members also reveals a unimodal structure that exhibits no evidence of merging. We compare our dynamic mass estimate with an independent weak-lensing based mass estimate finding that both are consistent. Our combined lensing and dynamical analysis of SL2S\,J02140-0535 demonstrates the importance of spectroscopic information in reliably identifying the lensing features. Our findings argue that the system is a relaxed, massive galaxy group where mass is traced by light. This work shows a potentially useful method for constraining large-scale properties inaccessible to strong lensing, such as the scale radius of the NFW profile.Comment: Accepted for publication in A&

    SARCS strong lensing galaxy groups: I - optical, weak lensing, and scaling laws

    Full text link
    We present the weak lensing and optical analysis of the SL2S-ARCS (SARCS) sample of strong lens candidates. The sample is based on the Strong Lensing Legacy Survey (SL2S), a systematic search of strong lensing systems in the photometric Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The SARCS sample focuses on arc-like features and is designed to contain mostly galaxy groups. We briefly present the weak lensing methodology that we use to estimate the mass of the SARCS objects. Among 126 candidates, we obtain a weak lensing detection for 89 objects with velocity dispersions of the Singular Isothermal Sphere mass model ranging from 350 to 1000 km/s with an average value of 600km/s, corresponding to a rich galaxy group (or poor cluster). From the galaxies belonging to the bright end of the group's red sequence (M_i<-21), we derive the optical properties of the SARCS candidates. We obtain typical richnesses of N=5-15 galaxies and optical luminosities of L=0.5-1.5e+12 Lsol (within a radius of 0.5 Mpc). We use these galaxies to compute luminosity density maps, from which a morphological classification reveals that a large fraction of the sample are groups with a complex light distribution, either elliptical or multimodal, suggesting that these objects are dynamically young structures. We finally combine the lensing and optical analyses to draw a sample of 80 most secure group candidates, i.e. weak lensing detection and over-density at the lens position in the luminosity map, to remove false detections and galaxy-scale systems from the initial sample. We use this reduced sample to probe the optical scaling relations in combination with a sample of massive galaxy clusters. We detect the expected correlations over the probed range in mass with a typical scatter of 25% in the SIS velocity dispersion at a given richness or luminosity, making these scaling laws interesting mass proxie

    The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?

    Full text link
    We present a study of the quiescent optical counterpart of the Accreting Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are consistent with a sinusoidal variability modulated with the orbital period, showing evidence for a strongly irradiated companion star, in agreement with previous findings. The observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system is fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curves we derive constraints on the companion star and disc fluxes, on the system distance and on the companion star mass. The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. The flux decrease and spectral evolution of the quiescent optical emission observed comparing our data with previous observations, collected over 5 years, cannot be well explained with the contribution of an irradiated companion star and an accretion disc alone. The progressive flux decrease as the system gets bluer could be due to a continuum component evolving towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence we hypothesize that an additional component, such as synchrotron emission from a jet was contributing significantly in the earlier data obtained during quiescence and then progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Swift J1357.2-0933: the faintest black hole?

    Get PDF
    Swift J1357.2-0933 is the first confirmed very faint black hole X-ray transient and has a short estimated orbital period of 2.8 hr. We observed Swift J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent state. The source is clearly detected at a 0.5-10 keV unabsorbed flux of ~3x10^-15 erg cm-2 s-1. If the source is located at a distance of 1.5 kpc (as suggested in the literature), this would imply a luminosity of ~8x10^29 erg s-1, making it the faintest detected quiescent black hole LMXB. This would also imply that there is no indication of a reversal in the quiescence X-ray luminosity versus orbital period diagram down to 2.8 hr, as has been predicted theoretically and recently supported by the detection of the 2.4 hr orbital period black hole MAXI J1659-152 at a 0.5-10 keV X-ray luminosity of ~ 1.2 x 10^31 erg s-1. However, there is considerable uncertainty in the distance of Swift J1357.2-0933 and it may be as distant as 6 kpc. In this case, its quiescent luminosity would be Lx ~ 1.3 x 10^31 erg s-1, i.e., similar to MAXI J1659-152 and hence it would support the existence of such a bifurcation period. We also detected the source in optical at r' ~22.3 mag with the Liverpool telescope, simultaneously to our X-ray observation. The X-ray/optical luminosity ratio of Swift J1357.2-0933 agrees with the expected value for a black hole at this range of quiescent X-ray luminosities.Comment: 5 pages, 3 figures, Accepted for publication in MNRA

    Exact Solution of the Munoz-Eaton Model for Protein Folding

    Full text link
    A transfer-matrix formalism is introduced to evaluate exactly the partition function of the Munoz-Eaton model, relating the folding kinetics of proteins of known structure to their thermodynamics and topology. This technique can be used for a generic protein, for any choice of the energy and entropy parameters, and in principle allows the model to be used as a first tool to characterize the dynamics of a protein of known native state and equilibrium population. Applications to a ÎČ\beta-hairpin and to protein CI-2, with comparisons to previous results, are also shown.Comment: 4 pages, 5 figures, RevTeX 4. To be published in Phys. Rev. Let

    The truncated and evolving inner accretion disc of the black hole GX 339-4

    Get PDF
    The nature of accretion onto stellar mass black holes in the low/hard state remains unresolved, with some evidence suggesting that the inner accretion disc is truncated and replaced by a hot flow. However, the detection of relativistic broadened Fe emission lines, even at relatively low luminosities, seems to require an accretion disc extending fully to its innermost stable circular orbit. Modelling such features is however highly susceptible to degeneracies, which could easily bias any interpretation. We present the first systematic study of the Fe line region to track how the inner accretion disc evolves in the low/hard state of the black hole GX 339−-4. Our four observations display increased broadening of the Fe line over two magnitudes in luminosity, which we use to track any variation of the disc inner radius. We find that the disc extends closer to the black hole at higher luminosities, but is consistent with being truncated throughout the entire low/hard state, a result which renders black hole spin estimates inaccurate at these stages of the outburst. Furthermore, we show that the evolution of our spectral inner disc radius estimates corresponds very closely to the trend of the break frequency in Fourier power spectra, supporting the interpretation of a truncated and evolving disc in the hard state.Comment: Accepted for publication in A&A. Some typos corrected from version
    • 

    corecore