11,064 research outputs found
A connection between accretion state and in an accreting neutron star: black hole-like soft state winds?
High resolution X-ray spectra of accreting stellar mass Black Holes reveal
the presence of accretion disc winds, traced by high ionisation Fe K lines.
These winds appear to have an equatorial geometry and to be observed only
during disc dominated states in which the radio jet is absent. Accreting
neutron star systems also show equatorial high ionisation absorbers. However,
the presence of any correlation with the accretion state has not been
previously tested. We have studied EXO 0748-676, a transient neutron star
system, for which we can reliably determine the accretion state, in order to
investigate the Fe K absorption/accretion state/jet connection. Not one of
twenty X-ray spectra obtained in the hard state revealed any significant Fe K
absorption line. However, intense Fe and Fe
(as well as a rarely observed Fe line plus S ; a blend of S and Ar ; Ca and Ca
, possibly produced by the same high ionisation
material) absorption lines ( eV, eV) are clearly detected during the only soft state
observation. This suggests that the connection between Fe K absorption and
states (and anticorrelation between the presence of Fe K absorption and jets)
is also valid for EXO 0748-676 and therefore it is not a unique property of
black hole systems but a more general characteristic of accreting sources.Comment: Accepted for publication in MNRAS Letter
Gravitational lensing and dynamics in SL2S\,J02140-0535: Probing the mass out to large radius
We aim to probe the mass of SL2S\,J02140-0535, a galaxy group at = 0.44
from the Strong Lensing Legacy Survey (SL2S). We combine strong lensing
modeling and dynamical constraints. The strong lensing analysis is based on
multi-band HST/ACS observations exhibiting strong lensing features that we have
followed-up spectroscopically with VLT/FORS2. To constrain the scale radius of
an NFW mass profile that cannot be constrained by strong lensing, we propose a
new method by taking advantage of the large-scale dynamical information
provided by VLT/FORS2 and KECK/LRIS spectroscopy of group members. In constrast
to other authors, we show that the observed lensing features in
SL2S\,J02140-0535 belong to different background sources: one at = 1.7
0.1 produces three images, while the other at = 1.023 0.001 has
only a single image. Our unimodal NFW mass model reproduces these images very
well. It is characterized by a concentration parameter = 6.0
0.6, which is slightly greater than the value expected from CDM
simulations for a mass of M 1 10 M_{\sun}.
The spectroscopic analysis of group members also reveals a unimodal structure
that exhibits no evidence of merging. We compare our dynamic mass estimate with
an independent weak-lensing based mass estimate finding that both are
consistent. Our combined lensing and dynamical analysis of SL2S\,J02140-0535
demonstrates the importance of spectroscopic information in reliably
identifying the lensing features. Our findings argue that the system is a
relaxed, massive galaxy group where mass is traced by light. This work shows a
potentially useful method for constraining large-scale properties inaccessible
to strong lensing, such as the scale radius of the NFW profile.Comment: Accepted for publication in A&
SARCS strong lensing galaxy groups: I - optical, weak lensing, and scaling laws
We present the weak lensing and optical analysis of the SL2S-ARCS (SARCS)
sample of strong lens candidates. The sample is based on the Strong Lensing
Legacy Survey (SL2S), a systematic search of strong lensing systems in the
photometric Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). The SARCS
sample focuses on arc-like features and is designed to contain mostly galaxy
groups. We briefly present the weak lensing methodology that we use to estimate
the mass of the SARCS objects. Among 126 candidates, we obtain a weak lensing
detection for 89 objects with velocity dispersions of the Singular Isothermal
Sphere mass model ranging from 350 to 1000 km/s with an average value of
600km/s, corresponding to a rich galaxy group (or poor cluster). From the
galaxies belonging to the bright end of the group's red sequence (M_i<-21), we
derive the optical properties of the SARCS candidates. We obtain typical
richnesses of N=5-15 galaxies and optical luminosities of L=0.5-1.5e+12 Lsol
(within a radius of 0.5 Mpc). We use these galaxies to compute luminosity
density maps, from which a morphological classification reveals that a large
fraction of the sample are groups with a complex light distribution, either
elliptical or multimodal, suggesting that these objects are dynamically young
structures. We finally combine the lensing and optical analyses to draw a
sample of 80 most secure group candidates, i.e. weak lensing detection and
over-density at the lens position in the luminosity map, to remove false
detections and galaxy-scale systems from the initial sample. We use this
reduced sample to probe the optical scaling relations in combination with a
sample of massive galaxy clusters. We detect the expected correlations over the
probed range in mass with a typical scatter of 25% in the SIS velocity
dispersion at a given richness or luminosity, making these scaling laws
interesting mass proxie
The long-term evolution of the X-ray pulsar XTE J1814-338: a receding jet contribution to the quiescent optical emission?
We present a study of the quiescent optical counterpart of the Accreting
Millisecond X-ray Pulsar XTE J1814-338, carrying out multiband (BVR) orbital
phase-resolved photometry using the ESO VLT/FORS2. The optical light curves are
consistent with a sinusoidal variability modulated with the orbital period,
showing evidence for a strongly irradiated companion star, in agreement with
previous findings. The observed colours cannot be accounted for by the
companion star alone, suggesting the presence of an accretion disc during
quiescence. The system is fainter in all analysed bands compared to previous
observations. The R band light curve displays a possible phase offset with
respect to the B and V band. Through a combined fit of the multi-band light
curves we derive constraints on the companion star and disc fluxes, on the
system distance and on the companion star mass. The irradiation luminosity
required to account for the observed day-side temperature of the companion star
is consistent with the spin-down luminosity of a millisecond radio pulsar. The
flux decrease and spectral evolution of the quiescent optical emission observed
comparing our data with previous observations, collected over 5 years, cannot
be well explained with the contribution of an irradiated companion star and an
accretion disc alone. The progressive flux decrease as the system gets bluer
could be due to a continuum component evolving towards a lower, bluer spectrum.
While most of the continuum component is likely due to the disc, we do not
expect it to become bluer in quiescence. Hence we hypothesize that an
additional component, such as synchrotron emission from a jet was contributing
significantly in the earlier data obtained during quiescence and then
progressively fading or moving its break frequency toward longer wavelengths.Comment: 7 pages, 8 figures, accepted for publication in Section 7. Stellar
structure and evolution of Astronomy and Astrophysic
Swift J1357.2-0933: the faintest black hole?
Swift J1357.2-0933 is the first confirmed very faint black hole X-ray
transient and has a short estimated orbital period of 2.8 hr. We observed Swift
J1357.2-0933 for ~50 ks with XMM-Newton in 2013 July during its quiescent
state. The source is clearly detected at a 0.5-10 keV unabsorbed flux of
~3x10^-15 erg cm-2 s-1. If the source is located at a distance of 1.5 kpc (as
suggested in the literature), this would imply a luminosity of ~8x10^29 erg
s-1, making it the faintest detected quiescent black hole LMXB. This would also
imply that there is no indication of a reversal in the quiescence X-ray
luminosity versus orbital period diagram down to 2.8 hr, as has been predicted
theoretically and recently supported by the detection of the 2.4 hr orbital
period black hole MAXI J1659-152 at a 0.5-10 keV X-ray luminosity of ~ 1.2 x
10^31 erg s-1. However, there is considerable uncertainty in the distance of
Swift J1357.2-0933 and it may be as distant as 6 kpc. In this case, its
quiescent luminosity would be Lx ~ 1.3 x 10^31 erg s-1, i.e., similar to MAXI
J1659-152 and hence it would support the existence of such a bifurcation
period. We also detected the source in optical at r' ~22.3 mag with the
Liverpool telescope, simultaneously to our X-ray observation. The X-ray/optical
luminosity ratio of Swift J1357.2-0933 agrees with the expected value for a
black hole at this range of quiescent X-ray luminosities.Comment: 5 pages, 3 figures, Accepted for publication in MNRA
Exact Solution of the Munoz-Eaton Model for Protein Folding
A transfer-matrix formalism is introduced to evaluate exactly the partition
function of the Munoz-Eaton model, relating the folding kinetics of proteins of
known structure to their thermodynamics and topology. This technique can be
used for a generic protein, for any choice of the energy and entropy
parameters, and in principle allows the model to be used as a first tool to
characterize the dynamics of a protein of known native state and equilibrium
population. Applications to a -hairpin and to protein CI-2, with
comparisons to previous results, are also shown.Comment: 4 pages, 5 figures, RevTeX 4. To be published in Phys. Rev. Let
The truncated and evolving inner accretion disc of the black hole GX 339-4
The nature of accretion onto stellar mass black holes in the low/hard state
remains unresolved, with some evidence suggesting that the inner accretion disc
is truncated and replaced by a hot flow. However, the detection of relativistic
broadened Fe emission lines, even at relatively low luminosities, seems to
require an accretion disc extending fully to its innermost stable circular
orbit. Modelling such features is however highly susceptible to degeneracies,
which could easily bias any interpretation. We present the first systematic
study of the Fe line region to track how the inner accretion disc evolves in
the low/hard state of the black hole GX 3394. Our four observations display
increased broadening of the Fe line over two magnitudes in luminosity, which we
use to track any variation of the disc inner radius. We find that the disc
extends closer to the black hole at higher luminosities, but is consistent with
being truncated throughout the entire low/hard state, a result which renders
black hole spin estimates inaccurate at these stages of the outburst.
Furthermore, we show that the evolution of our spectral inner disc radius
estimates corresponds very closely to the trend of the break frequency in
Fourier power spectra, supporting the interpretation of a truncated and
evolving disc in the hard state.Comment: Accepted for publication in A&A. Some typos corrected from version
- âŠ