The nature of accretion onto stellar mass black holes in the low/hard state
remains unresolved, with some evidence suggesting that the inner accretion disc
is truncated and replaced by a hot flow. However, the detection of relativistic
broadened Fe emission lines, even at relatively low luminosities, seems to
require an accretion disc extending fully to its innermost stable circular
orbit. Modelling such features is however highly susceptible to degeneracies,
which could easily bias any interpretation. We present the first systematic
study of the Fe line region to track how the inner accretion disc evolves in
the low/hard state of the black hole GX 339−4. Our four observations display
increased broadening of the Fe line over two magnitudes in luminosity, which we
use to track any variation of the disc inner radius. We find that the disc
extends closer to the black hole at higher luminosities, but is consistent with
being truncated throughout the entire low/hard state, a result which renders
black hole spin estimates inaccurate at these stages of the outburst.
Furthermore, we show that the evolution of our spectral inner disc radius
estimates corresponds very closely to the trend of the break frequency in
Fourier power spectra, supporting the interpretation of a truncated and
evolving disc in the hard state.Comment: Accepted for publication in A&A. Some typos corrected from version