19 research outputs found

    A review of macrophage microRNAs' role in human asthma

    Get PDF
    There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma

    Soluble major histocompatibility complex class I-related chain B molecules are increased and correlate with clinical outcomes during rhinovirus infection in healthy subjects

    Get PDF
    BACKGROUND: Surface major histocompatibility complex class I-related chain (MIC) A and B molecules are increased by IL-15 and have a role in the activation of natural killer group 2 member D-positive natural killer and CD8 T cells. MICA and MICB also exist in soluble forms (sMICA and sMICB). Rhinoviruses (RVs) are the major cause of asthma exacerbations, and IL-15 levels are decreased in the airways of subjects with asthma. The role of MIC molecules in immune responses in the lung has not been studied. Here, we determine the relationship between MICA and MICB and RV infection in vitro in respiratory epithelial cells and in vivo in healthy subjects and subjects with asthma. METHODS: Surface MICA and MICB, as well as sMICA and sMICB, in respiratory epithelial cells were measured in vitro in response to RV infection and exposure to IL-15. Levels of sMICA and sMICB in serum, sputum, and BAL were measured and correlated with blood and bronchoalveolar immune cells in healthy subjects and subjects with asthma before and during RV infection. RESULTS: RV increased MICA and MICB in vitro in epithelial cells. Exogenous IL-15 upregulated sMICB levels in RV-infected epithelial cells. Levels of sMICB molecules in serum were increased in healthy subjects compared with subjects with stable asthma. Following RV infection, airway levels of sMIC are upregulated, and there are positive correlations between sputum MICB levels and the percentage of bronchoalveolar natural killer cells in healthy subjects but not subjects with asthma. CONCLUSIONS: RV infection induces MIC molecules in respiratory epithelial cells in vitro and in vivo. Induction of MICB molecules is impaired in subjects with asthma, suggesting these molecules may have a role in the antiviral immune response to RV infections

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    The role of macrophage IL-10/innate IFN interplay during virus-induced asthma

    No full text
    Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10–IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations

    The role of vitamin D deficiency in children with recurrent wheezing-clinical significance

    No full text
    Recurrent wheezing (RW) in infancy is one of the most frequent reasons for parents to consult health care providers and creates a significant global burden. Clinical course of RW is difficult to predict, also which infants will progress to asthma, since no valid biomarkers have been established. Identification of those infants with RW who are at risk of further recurrences and/or severe acute respiratory tract infection (ARTI) could help pediatricians to improve their therapeutic decisions. Increasing research interest is focused on the extra-skeletal actions of vitamin D (VD) and the clinical impact of VD insufficiency/deficiency. As VD deficiency could be a risk factor for causing RW in children, measurement of their serum level of 25-hydroxycholecalciferol [25(OH)D] is recommended. In the case of deficiency, VD administration is recommended in age-appropriate doses for at least 6 weeks, until achievement of normal blood 25(OH)D level, followed by supplementation as long as exposure to sun is inadequate. Higher doses of VD given in an attempt to prevent asthma development appear to be of no additional benefit. In children with severe ARTI, VD level is recommended to be assess

    Vitamin D modulation of innate immune responses to respiratory viral infections

    No full text
    Vitamin D, in addition to its classical functions in bone homeostasis, has a modulatory and regulatory role in multiple processes, including host defense, inflammation, immunity, and epithelial repair. Patients with respiratory disease are frequently deficient in vitamin D, implying that supplementation might provide significant benefit to these patients. Respiratory viral infections are common and are the main trigger of acute exacerbations and hospitalization in children and adults with asthma and other airways diseases. Respiratory monocytes/macrophages and epithelial cells constitutively express the vitamin D receptor. Vitamin D, acting through this receptor, may be important in protection against respiratory infections. Whether the in vitro findings can be translated into a substantial in vivo benefit still remains uncertain. Here we review the in vitro data on the role of vitamin D in antiviral innate immunity, the data concerning the deficient levels of vitamin D in lung diseases, and the in vivo role of supplementation as protection against respiratory viral infections in healthy individuals and in patients with chronic respiratory diseases. Finally, we suggest ways of improving the effectiveness of vitamin D as an adjuvant in the prevention and treatment of acute respiratory infections

    Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro

    No full text
    BACKGROUND: By modulating the antiviral immune response via vitamin D receptor, the active form of vitamin D (1,25-dihydroxyvitamin D, calcitriol) could play a central role in protection against respiratory virus infections. This in vitro study tested the hypothesis that respiratory viruses modulate vitamin D receptor expression in human bronchial epithelial cells and this modulation affects the antiviral response to exogenous vitamin D. METHODS: Human primary bronchial epithelial cells were infected with rhinoviruses and respiratory syncytial virus in the presence or absence of vitamin D. Expression of vitamin D receptor, 1α-hydroxylase (1α(OH)ase), 24-hydroxylase (24(OH)ase), innate interferons, interferon stimulated genes and cathelicidin were measured by quantitative polymerase chain reaction. The antiviral effect of vitamin D on rhinovirus replication was determined by measurement of virus load. A direct inactivation assay was used to determine the antiviral activity of cathelicidin. RESULTS: Both RV and RSV decreased vitamin D receptor and 24(OH)ase and, in addition, RSV increased 1α(OH)ase expression in epithelial cells. Vitamin D decreased rhinovirus replication and release, and increased rhinovirus-induced interferon stimulated genes and cathelicidin. Furthermore, cathelicidin had direct anti-rhinovirus activity. CONCLUSIONS: Despite lower vitamin D receptor levels in rhinovirus-infected epithelial cells, exogenous vitamin D increased antiviral defences most likely via cathelicidin and innate interferon pathways
    corecore