507 research outputs found
Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques
In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness
Prevalence of metabolic syndrome in Murcia Region, a southern European Mediterranean area with low cardiovascular risk and high obesity
<p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MS) is associated with subsequent appearance of diabetes and cardiovascular disease. As compared to other Spanish regions, Murcia (southern Spain) registers increased obesity as well as cardiovascular morbidity and mortality. The aim of this study was to assess the prevalence of MS and its components, awareness of obesity as a health risk and associated lifestyles.</p> <p>Methods</p> <p>A population-based, cross-sectional study was conducted in 2003, covering a sample of 1555 individuals 20 years and over. MS was defined according to the Revised National Cholesterol Education Program Adult Treatment Panel III (R-ATPIII), International Diabetes Federation (IDF) and Joint Interim Statement (JIS) criteria. Both low (94/80) and high (102/88) waist circumference (WC) thresholds were considered.</p> <p>Results</p> <p>Prevalence of MS was 27.2% (95%CI: 25.2-29.2), 32.2% (95%CI: 30.1-34.3) and 33.2% (95%CI: 31.2-35.3) according to the R-ATPIII, IDF and JIS94/80 respectively. It increased with age until reaching 52.6% (R-ATPIII) or 60.3% (JIS94/80) among persons aged 70 years and over, and was higher in persons with little or no formal education (51.7% R-ATPIII, 57.3% JIS94/80). The most common risk factors were hypertension (46.6%) and central obesity (40.7% and 66.1% according to high and low WC cut-off points respectively). Although most persons were aware that obesity increased health risks, regular exercise was very unusual (13.0% centrally obese, 27.2% non-centrally obese). Adherence to dietary recommendations was similar among centrally obese and non-centrally obese subjects.</p> <p>Conclusions</p> <p>Prevalence of MS is high in our population, is comparable to that found in northern Europe and varies with the definition used. Adherence to preventive recommendations and to adequate weight promotion is very low. In the absence of a specific treatment for MS, integrated intervention based on a sustained increase in physical activity and changes in diet should be reinforced.</p
Interplay between Synaptonemal Complex, Homologous Recombination, and Centromeres during Mammalian Meiosis
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function
Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies
<p>Abstract</p> <p>Background</p> <p>Chikungunya fever is an emerging arboviral disease characterized by an algo-eruptive syndrome, inflammatory polyarthralgias, or tenosynovitis that can last for months to years. Up to now, the pathophysiology of the chronic stage is poorly understood.</p> <p>Case presentation</p> <p>We report the first case of CHIKV infection with chronic associated rheumatism in a patient who developed progressive erosive arthritis with expression of inflammatory mediators and persistence of specific IgM antibodies over 24 months following infection.</p> <p>Conclusions</p> <p>Understanding the specific features of chikungunya virus as well as how the virus interacts with its host are essential for the prevention, treatment or cure of chikungunya disease.</p
Polymorphism in COX-2 modifies the inverse association between Helicobacter pylori seropositivity and esophageal squamous cell carcinoma risk in Taiwan: a case control study
<p>Abstract</p> <p>Background</p> <p>Overexpression of Cyclooxygenase-2 (COX-2) was observed in many types of cancers, including esophageal squamous cell carcinoma (ESCC). One functional SNP, COX-2 -1195G/A, has been reported to mediate susceptibility of ESCC in Chinese populations. In our previous study, the presence of <it>Helicobacter pylori </it>(<it>H. pylori</it>) was found to play a protective role in development of ESCC. The interaction of COX-2 and <it>H. pylori </it>in gastric cancer was well investigated. However, literature on their interaction in ESCC risk is scarce. The purpose of this study was to evaluate the association and interaction between COX-2 single nucleotide polymorphism (SNP), <it>H. pylori </it>infection and the risk of developing ESCC.</p> <p>Methods</p> <p>One hundred and eighty patients with ESCC and 194 controls were enrolled in this study. Personal data regarding related risk factors, including alcohol consumption, smoking habits and betel quid chewing, were collected via questionnaire. Genotypes of the COX-2 -1195 polymorphism were determined by PCR-based restriction fragment length polymorphism. <it>H. pylori </it>seropositivity was defined by immunochromatographic screening test. Data was analyzed by chi-squared tests and polytomous logistics regression.</p> <p>Results</p> <p>In analysis adjusting for the covariates and confounders, <it>H. pylori </it>seropositivity was found to be inversely association with the ESCC development (adjusted OR: 0.5, 95% CI: 0.3 – 0.9). COX-2 -1195 AA homozygous was associated with an increased risk of contracting ESCC in comparison with the non-AA group, especially among patients with <it>H. pylori </it>seronegative (adjusted OR ratio: 2.9, 95% CI: 1.2 – 7.3). The effect was strengthened among patients with lower third ESCC (adjusted OR ratio: 6.9, 95% CI 2.1 – 22.5). Besides, <it>H. pylori </it>seropositivity conveyed a notably inverse effect among patients with COX-2 AA polymorphism (AOR ratio: 0.3, 95% CI: 0.1 – 0.9), and the effect was observed to be enhanced for the lower third ESCC patients (AOR ratio: 0.09, 95% CI: 0.02 – 0.47, <it>p </it>for multiplicative interaction 0.008)</p> <p>Conclusion</p> <p><it>H. pylori </it>seropositivity is inversely associated with the risk of ESCC in Taiwan, and COX-2 -1195 polymorphism plays a role in modifying the influence between <it>H. pylori </it>and ESCC, especially in lower third esophagus.</p
Acute Respiratory Distress Syndrome Induced by a Swine 2009 H1N1 Variant in Mice
Background: Acute respiratory distress syndrome (ARDS) induced by pandemic 2009 H1N1 influenza virus has been widely reported and was considered the main cause of death in critically ill patients with 2009 H1N1 infection. However, no animal model has been developed for ARDS caused by infection with 2009 H1N1 virus. Here, we present a mouse model of ARDS induced by 2009 H1N1 virus. Methodology Principal Findings: Mice were inoculated with A/swine/Shandong/731/2009 (SD/09), which was a 2009 H1N1 influenza variant with a G222D mutation in the hemagglutinin. Clinical symptoms were recorded every day. Lung injury was assessed by lung water content and histopathological observation. Arterial blood gas, leukocyte count in the bronchial alveolar lavage fluid and blood, virus titers, and cytokine levels in the lung were measured at various times post-inoculation. Mice infected with SD/09 virus showed typical ARDS symptoms characterized by 60 % lethality on days 8–10 postinoculation, highly edematous lungs, inflammatory cellular infiltration, alveolar and interstitial edema, lung hemorrhage, progressive and severe hypoxemia, and elevated levels of proinflammatory cytokines and chemokines. Conclusions/Significance: These results suggested that we successfully established an ARDS mouse model induced by a virulent 2009 H1N1 variant without previous adaptation, which may be of benefit for evaluating the pathogenesis or therapy of human ARDS caused by 2009 H1N1 virus
- …