42 research outputs found

    Biokinetics and dosimetry of commonly used radiopharmaceuticals in diagnostic nuclear medicine – a review

    Get PDF
    Purpose The impact on patients’ health of radiopharmaceuticals in nuclear medicine diagnostics has not until now been evaluated systematically in a European context. Therefore, as part of the EU-funded Project PEDDOSE. NET (www.peddose.net), we review and summarize the current knowledge on biokinetics and dosimetry of commonly used diagnostic radiopharmaceuticals. Methods A detailed literature search on published biokinetic and dosimetric data was performed mostly via PubMed (www.ncbi.nlm.nih.gov/pubmed). In principle the criteria for inclusion of data followed the EANM Dosimetry Committee guidance document on good clinical reporting. Results Data on dosimetry and biokinetics can be difficult to find, are scattered in various journals and, especially in paediatric nuclear medicine, are very scarce. The data collection and calculation methods vary with respect to the time-points, bladder voiding, dose assessment after the last data point and the way the effective dose was calculated. In many studies the number of subjects included for obtaining biokinetic and dosimetry data was fewer than ten, and some of the biokinetic data were acquired more than 20 years ago. Conclusion It would be of interest to generate new data on biokinetics and dosimetry in diagnostic nuclear medicine using state-of-the-art equipment and more uniform dosimetry protocols. For easier public access to dosimetry data for diagnostic radiopharmaceuticals, a database containing these data should be created and maintained

    Adhesion Failures Determine the Pattern of Choroidal Neovascularization in the Eye: A Computer Simulation Study

    Get PDF
    Choroidal neovascularization (CNV) of the macular area of the retina is the major cause of severe vision loss in adults. In CNV, after choriocapillaries initially penetrate Bruch's membrane (BrM), invading vessels may regress or expand (CNV initiation). Next, during Early and Late CNV, the expanding vasculature usually spreads in one of three distinct patterns: in a layer between BrM and the retinal pigment epithelium (sub-RPE or Type 1 CNV), in a layer between the RPE and the photoreceptors (sub-retinal or Type 2 CNV) or in both loci simultaneously (combined pattern or Type 3 CNV). While most studies hypothesize that CNV primarily results from growth-factor effects or holes in BrM, our three-dimensional simulations of multi-cell model of the normal and pathological maculae recapitulate the three growth patterns, under the hypothesis that CNV results from combinations of impairment of: 1) RPE-RPE epithelial junctional adhesion, 2) Adhesion of the RPE basement membrane complex to BrM (RPE-BrM adhesion), and 3) Adhesion of the RPE to the photoreceptor outer segments (RPE-POS adhesion). Our key findings are that when an endothelial tip cell penetrates BrM: 1) RPE with normal epithelial junctions, basal attachment to BrM and apical attachment to POS resists CNV. 2) Small holes in BrM do not, by themselves, initiate CNV. 3) RPE with normal epithelial junctions and normal apical RPE-POS adhesion, but weak adhesion to BrM (e.g. due to lipid accumulation in BrM) results in Early sub-RPE CNV. 4) Normal adhesion of RBaM to BrM, but reduced apical RPE-POS or epithelial RPE-RPE adhesion (e.g. due to inflammation) results in Early sub-retinal CNV. 5) Simultaneous reduction in RPE-RPE epithelial binding and RPE-BrM adhesion results in either sub-RPE or sub-retinal CNV which often progresses to combined pattern CNV. These findings suggest that defects in adhesion dominate CNV initiation and progression

    Characterisation of a murine model of the late asthmatic response

    Get PDF
    Background: The incidence of asthma is increasing at an alarming rate. While the current available therapies are effective, there are associated side effects and they fail to adequately control symptoms in all patient subsets. In the search to understand disease pathogenesis and find effective therapies hypotheses are often tested in animal models before progressing into clinical studies. However, current dogma is that animal model data is often not predictive of clinical outcome. One possible reason for this is the end points measured such as antigen-challenge induced late asthmatic response (LAR) is often used in early clinical development, but seldom in animal model systems. As the mouse is typically selected as preferred species for pre-clinical models, we wanted to characterise and probe the validity of a murine model exhibiting an allergen induced LAR. Methods: C57BL/6 mice were sensitised with antigen and subsequently topically challenged with the same antigen. The role of AlumTM adjuvant, glucocorticoid, long acting muscarinic receptor antagonist (LAMA), TRPA1, CD4+ and CD8+ T cells, B cells, Mast cells and IgE were determined in the LAR using genetically modified mice and a range of pharmacological tools. Results: Our data showed that unlike other features of asthma (e.g. cellular inflammation, elevated IgE levels and airway hyper-reactivity (AHR) the LAR required AlumTMadjuvant. Furthermore, the LAR appeared to be sensitive to glucocorticoid and required CD4+ T cells. Unlike in other species studied, the LAR was not sensitive to LAMA treatment nor required the TRPA1 ion channel, suggesting that airway sensory nerves are not involved in the LAR in this species. Furthermore, the data suggested that CD8+ T cells and the mast cell—B-cell - IgE axis appear to be protective in this murine model. Conclusion: Together we can conclude that this model does feature steroid sensitive, CD4+ T cell dependent, allergen induced LAR. However, collectively our data questions the validity of using the murine pre-clinical model of LAR in the assessment of future asthma therapies

    Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration

    Get PDF

    Integrated SDSS for environmental risk analysis in sustainable coastal area planning

    No full text
    The work deals with the development and implementation of a Spatial Decision Support System (SDSS) platform for coastal environmental risk analysis through the integration of multisource satellite data (Sentinel-1 and 2 and COSMOSkyMed) coupled with open source coastal hydrodynamic model addressed to flooding, erosion and pollution. The processing results allow us to cope with longshore pollutant dynamics connected to bathing use, to derive the shoreline changes and back-dune vegetation mapping, rocky coast movements detection as well as coastal area changes derived through advanced images segmentation techniques, multi-band change-detection and Persistent Scattered Interferometric Synthetic Aperture Radar technologies (PSInSAR). The SDSS provides cyclical production and updating in phase with satellite data acquisition frequency of the coastal scenarios for flooding risk analysis. All of these issues well enable operative products to be employed in the knowledge chain for sustainable coastal area planning activities. Moreover, self-consistent applicative tools, provided with proper graphical interface developed in IDL and integrated in SDSS, lead displaying and automatic extraction of the coastline sequence from Sentinel-1 data. Thus the comparison of two or more shorelines, even if multi-sources, provides the computation of coastal erosion and aggradation as well as the areas prone to coastal flooding. Finally, some interoperable tools for morpho-hydrodynamic modelling assimilation have been developed and implemented to reproduce flooding and pollution risk scenarios as well as coastal resilience assessment at different return time
    corecore