52 research outputs found

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    APPL Proteins FRET at the BAR: Direct Observation of APPL1 and APPL2 BAR Domain-Mediated Interactions on Cell Membranes Using FRET Microscopy

    Get PDF
    Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies

    Role of MC1R variants in uveal melanoma

    Get PDF
    Variants of the melanocortin-1 receptor (MC1R) gene have been linked to sun-sensitive skin types and hair colour, and may independently play a role in susceptibility to cutaneous melanoma. To assess the role of MC1R variants in uveal melanoma, we have analysed a cohort of 350 patients for the changes within the major region of the gene displaying sequence variation. Eight variants were detected – V60L, D84E, V92M, R151C, I155T, R160W, R163Q and D294H – 63% of these patients being hetero- or homozygous for at least one variant. Standard melanoma risk factor data were available on 119 of the patients. MC1R variants were significantly associated with hair colour (P¼0.03) but not skin or eye colour. The frequency of the variants detected in the 350 patients was comparable with those in the general population, and comparison of the cumulative tumour distribution by age at diagnosis in carriers and noncarriers provided no evidence that MC1R variants confer an increased risk of uveal melanoma. We interpret the data as indicating that MC1R variants do not appear to be major determinants of susceptibility to uveal melanoma. © 2003 Cancer Research U

    Melanocortin-1 Receptor, Skin Cancer and Phenotypic Characteristics (M-SKIP) Project: Study Design and Methods for Pooling Results of Genetic Epidemiological Studies

    Get PDF
    Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods: Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion: Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields

    A Novel Role for Mc1r in the Parallel Evolution of Depigmentation in Independent Populations of the Cavefish Astyanax mexicanus

    Get PDF
    The evolution of degenerate characteristics remains a poorly understood phenomenon. Only recently has the identification of mutations underlying regressive phenotypes become accessible through the use of genetic analyses. Focusing on the Mexican cave tetra Astyanax mexicanus, we describe, here, an analysis of the brown mutation, which was first described in the literature nearly 40 years ago. This phenotype causes reduced melanin content, decreased melanophore number, and brownish eyes in convergent cave forms of A. mexicanus. Crosses demonstrate non-complementation of the brown phenotype in F2 individuals derived from two independent cave populations: Pachón and the linked Yerbaniz and Japonés caves, indicating the same locus is responsible for reduced pigmentation in these fish. While the brown mutant phenotype arose prior to the fixation of albinism in Pachón cave individuals, it is unclear whether the brown mutation arose before or after the fixation of albinism in the linked Yerbaniz/Japonés caves. Using a QTL approach combined with sequence and functional analyses, we have discovered that two distinct genetic alterations in the coding sequence of the gene Mc1r cause reduced pigmentation associated with the brown mutant phenotype in these caves. Our analysis identifies a novel role for Mc1r in the evolution of degenerative phenotypes in blind Mexican cavefish. Further, the brown phenotype has arisen independently in geographically separate caves, mediated through different mutations of the same gene. This example of parallelism indicates that certain genes are frequent targets of mutation in the repeated evolution of regressive phenotypes in cave-adapted species

    Analysis of Tp53 Codon 72 Polymorphisms, Tp53 Mutations, and HPV Infection in Cutaneous Squamous Cell Carcinomas

    Get PDF
    Non-melanoma skin cancers are one of the most common human malignancies accounting for 2-3% of tumors in the US and represent a significant health burden. Epidemiology studies have implicated Tp53 mutations triggered by UV exposure, and human papilloma virus (HPV) infection to be significant causes of non-melanoma skin cancer. However, the relationship between Tp53 and cutaneous HPV infection is not well understood in skin cancers. In this study we assessed the association of HPV infection and Tp53 polymorphisms and mutations in lesional specimens with squamous cell carcinomas.We studied 55 cases of histologically confirmed cutaneous squamous cell carcinoma and 41 controls for the presence of HPV infection and Tp53 genotype (mutations and polymorphism).We found an increased number of Tp53 mutations in the squamous cell carcinoma samples compared with perilesional or control samples. There was increased frequency of homozygous Tp53-72R polymorphism in cases with squamous cell carcinomas, while the Tp53-72P allele (Tp53-72R/P and Tp53-72P/P) was more frequent in normal control samples. Carcinoma samples positive for HPV showed a decreased frequency of Tp53 mutations compared to those without HPV infection. In addition, carcinoma samples with a Tp53-72P allele showed an increased incidence of Tp53 mutations in comparison carcinomas samples homozygous for Tp53-72R.These studies suggest there are two separate pathways (HPV infection and Tp53 mutation) leading to cutaneous squamous cell carcinomas stratified by the Tp53 codon-72 polymorphism. The presence of a Tp53-72P allele is protective against cutaneous squamous cell carcinoma, and carcinoma specimens with Tp53-72P are more likely to have Tp53 mutations. In contrast Tp53-72R is a significant risk factor for cutaneous squamous cell carcinoma and is frequently associated with HPV infection instead of Tp53 mutations. Heterozygosity for Tp53-72R/P is protective against squamous cell carcinomas, possibly reflecting a requirement for both HPV infection and Tp53 mutations
    • …
    corecore