9 research outputs found

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Nanoscale Dynamics of Phase Flipping in Water near its Hypothesized Liquid-Liquid Critical Point

    Get PDF
    Achieving a coherent understanding of the many thermodynamic and dynamic anomalies of water is among the most important unsolved puzzles in physics, chemistry, and biology. One hypothesized explanation imagines the existence of a line of first order phase transitions separating two liquid phases and terminating at a novel "liquid-liquid" critical point in a region of low temperature (T250KT \approx 250 \rm{K}) and high pressure (P200MPaP \approx 200 \rm{MPa}). Here we analyze a common model of water, the ST2 model, and find that the entire system flips between liquid states of high and low density. Further, we find that in the critical region crystallites melt on a time scale of nanoseconds. We perform a finite-size scaling analysis that accurately locates both the liquid-liquid coexistence line and its associated liquid-liquid critical point.Comment: 22 pages, 5 figure

    Exceptional thermodynamics: the equation of state of G2 gauge theory

    Full text link

    Monte Carlo Simulations of Spin Systems

    No full text
    Abstract. This lecture gives a brief introduction to Monte Carlo simulations of classical O(n) spin systems such as the Ising (n = 1), XY (n = 2), and Heisenberg (n = 3) model. In the first part I discuss some aspects of Monte Carlo algorithms to generate the raw data. Here special emphasis is placed on non-local cluster update algorithms which proved to be most efficient for this class of models. The second part is devoted to the data analysis at a continuous phase transition. For the example of the three-dimensional Heisenberg model it is shown how precise estimates of the transition temperature and the critical exponents can be extracted from the raw data. I conclude with a brief overview of recent results from similar high-precision studies of the Ising and XY model.
    corecore