7 research outputs found

    The Effect of Mental Fatigue on Cognitive and Aerobic Performance in Adolescent Active Endurance Athletes: Insights from a Randomized Counterbalanced, Cross-Over Trial

    Get PDF
    The aim of this randomized counterbalanced, 2 × 2 cross-over study was to investigate the effects of mental fatigue on cognitive and aerobic performance in adolescent active endurance athletes. Ten active male endurance athletes (age = 16 ± 1.05 years, height = 1.62 ± 0.54 m, body mass = 55.5 ± 4.2 kg) were familiarized to all experimental procedures on day 1. On days 2 and 3, participants provided a rating of mental fatigue before and after completing a 30 min Stroop test that measures selective attention capacity and skills and their processing speed ability (mentally fatigued condition), or a 30 min control condition in a randomized counterbalanced order. They then performed d2 test and a 20 m multistage fitness test (MSFT), which was used to measure selective and sustained attention and visual scanning speed (i.e., concentration performance (CP) and total number of errors (E)) and aerobic fitness (i.e., maximum oxygen uptake (VO2max) and velocity at which VO2max occurs (vVO2max)), respectively. Rating of perceived exertion (RPE) was assessed after a MSFT. Subjective ratings of mental fatigue were higher after the Stroop task (p < 0.001). CP (p = 0.0.1), E (p < 0.001), vVO2max (p = 0.020), and estimated VO2max (p = 0.021) values were negatively affected by mental fatigue. RPE were significantly higher in the mentally fatigued than in the control conditions (p = 0.02) post-MSFT. Mental fatigue impairs aerobic and cognitive performance in active male endurance athletes

    Endurance training and insulin therapy need to be associated to fully exert their respective beneficial effects on oxidant stress and glycemic regulation in diabetic rats.

    No full text
    International audienceAbstract In type 1 diabetic subjects, hyperglycemia-induced oxidant stress (OS) plays a central role in the onset and development of diabetes complications. This study aimed to assess the benefits of an endurance training program and insulin therapy, alone or in combination, on the glycemic regulation, markers for OSand antioxidant system in diabetic rats. Forty male Wistar rats were divided into diabetic (D), insulin-treated diabetic (D-Ins), diabetic trained (D-Tr), or insulin-treated diabetic trained (D-Ins+ Tr) groups. An additional healthy group served as control group. Insulin therapy (Lantus, insulin glargine, Sanofi) and endurance training (a treadmill run of 60 min/day, 25 m/min, 5 days/week) were initiated 1 week after streptozotocin-induced diabetes (45 mg/kg) and lasted for 8 weeks. At the end of the protocol, blood glucose and fructosamine levels, markers for skeletal muscle OS (CML, isoprostanes, GSH/GSSG) and antioxidant system (SOD and GPx activity, ORAC) were assessed. In diabetic rats, the glycemic control was altered and OS marker levels were increased, while the antioxidant system activity remained unchanged. Insulin treatment improved the glycemic regulation, the pro-antioxidant statusand contributed to the reduction of OS marker levels. Endurance training decreased OS marker levels without improving the antioxidant enzyme activity. Endurance training and insulin therapy acted independently (by different ways), but their association prolonged the insulin action and allowed a better adaptation of the antioxidant system. To conclude, our results demonstrate that combination of insulin treatment and endurance training leads to greater benefits on the glycemic regulation and oxidant status

    Superoxide production pathways in aortas of diabetic rats: beneficial effects of insulin therapy and endurance training.

    No full text
    International audienceSuperoxide (O 2 (·-) ) overproduction, by decreasing the nitric oxide ((·)NO) bioavailability, contributes to vascular complications in type 1 diabetes. In this disease, the vascular O 2 (·-) can be produced by the NADPH oxidase (NOX), nitric oxide synthase (NOS)and xanthine oxidase (XO). This study aimed to determine the contribution of each enzymatic pathway in hyperglycemia-induced O 2 (·-) overproductionand the effects of an endurance training program and insulin therapy, associated or not, on the O 2 (·-) production (amount and related enzymes) in diabetic rats. Forty male Wistar rats were divided into diabetic (D), diabetic treated with insulin (D-Ins), diabetic trained (D-Tr), or diabetic insulin-treated and trained (D-Ins + Tr) groups. An additional healthy group was used as control. Insulin therapy (Glargine Lantus, Sanofi) and endurance training (treadmill run: 60 min/day, 25 m/min, 5 days/week) started 1 week after diabetes induction by streptozotocin (45 mg/kg)and lasted for 8 weeks. At the end of the protocol, the O 2 (·-) production in aorta rings was evaluated by histochemical analyses (DHE staining). Each production pathway was studied by inhibiting NOX (apocynin), NOS (L-Name), or XO (allopurinol) before DHE staining. Diabetic rats exhibited hyperglycemia-induced O 2 (·-) overproduction, resulting from NOX, NOSand XO activation. Insulin therapy and endurance training, associated or not, decreased efficiently and similarly the O 2 (·-) overproduction. Insulin therapy reduced the hyperglycemia and decreased the three enzymatic pathways implicated in the O 2 (·-) production. Endurance training decreased directly the NOS and XO activity. While both therapeutic strategies activated different pathways, their association did not reduce the O 2 (·-) overproduction more significantly
    corecore