46 research outputs found

    Impact of intermittent preventive treatment with sulphadoxine-pyrimethamine targeting the transmission season on the incidence of clinical malaria in children in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that intermittent preventive malaria treatment (IPT) in infants in areas of stable malaria transmission reduces malaria and severe anaemia incidence. However in most areas malaria morbidity and mortality remain high in older children.</p> <p>Methods</p> <p>To evaluate the effect of seasonal IPT with sulphadoxine pyrimethamine (SP) on incidence of malaria disease in area of seasonal transmission, 262 children 6 months-10 years in Kambila, Mali were randomized to receive either IPT with SP twice at eight weeks interval or no IPT during the transmission season of 2002 and were followed up for 12 months. Subjects were also followed during the subsequent transmission season in 2003 to assess possible rebound effect. Clinical malaria cases were treated with SP and followed to assess the <it>in vivo </it>response during both periods.</p> <p>Results</p> <p>The incidence rate of malaria disease per 1,000 person-months during the first 12 months was 3.2 episodes in the treatment group vs. 5.8 episodes in the control group with age-adjusted Protective Efficacy (PE) of 42.5%; [95% CI 28.6%–53.8%]. When the first 16 weeks of follow up is considered age-adjusted PE was 67.5% [95% CI 55.3% – 76.6%]. During the subsequent transmission season, the incidence of clinical malaria per 1000 persons-days was similar between the two groups (23.0 vs 21.5 episodes, age-adjusted IRR = 1.07 [95% CI, 0.90–1.27]). No significant difference was detected in <it>in vivo </it>response between the groups during both periods.</p> <p>Conclusion</p> <p>Two malaria intermittent treatments targeting the peak transmission season reduced the annual incidence rate of clinical malaria by 42.5% in an area with intense seasonal transmission. This simple strategy is likely to be one of the most effectives in reducing malaria burden in such areas.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00623155</p

    Micro-epidemiology of Plasmodium falciparum malaria: Is there any difference in transmission risk between neighbouring villages?

    Get PDF
    BACKGROUND: Malaria control strategies are designed as a solution for either the whole region or the whole country and are assumed to suit every setting. There is a need to shift from this assumption because transmission may be different from one local setting to another. The aim of this study was to assess the risk of clinical malaria given the village of residence among under-five children in rural north-western Burkina Faso. METHODS: 867 children (6–59 months) were randomly selected from four sites. Interviewers visited the children weekly at home over a one-year period and tested them for fever. Children with fever were tested for malaria parasites. An episode of clinical malaria was defined as fever (axillary temperature ≥ 37.5°C) + parasites density ≥ 5,000 parasites/μl. Logistic regression was used to assess the risk of clinical malaria among children at a given site of residence. RESULTS: Children accumulated 758 person years (PYs). Overall, 597 episodes of clinical malaria were observed, giving an incidence rate of 0.79 per PY. The risk of clinical malaria varied amongst the four sites. Taking one village as reference the odds ratio for the other three sites ranged from 0.66; 95%CI: 0.44–0.98 to 1.49; 95%CI: 1.10–2.01. CONCLUSION: Malaria control strategies should be designed to fit the local context. The heterogeneity of transmission should be assessed at the district level to allow cost-effective resource allocation that gives priority to locations with high risk. Functional routine health information systems could provide the necessary data for context specific risk assessment

    Malaria risk and access to prevention and treatment in the paddies of the Kilombero Valley, Tanzania

    Get PDF
    Background: The Kilombero Valley is a highly malaria-endemic agricultural area in south-eastern Tanzania. Seasonal flooding of the valley is favourable to malaria transmission. During the farming season, many households move to distant field sites (shamba in Swahili) in the fertile river floodplain for the cultivation of rice. In the shamba, people live for several months in temporary shelters, far from the nearest health services. This study assessed the impact of seasonal movements to remote fields on malaria risk and treatment-seeking behaviour. Methods: A longitudinal study followed approximately 100 randomly selected farming households over six months. Every household was visited monthly and whereabouts of household members, activities in the fields, fever cases and treatment seeking for recent fever episodes were recorded. Results: Fever incidence rates were lower in the shamba compared to the villages and moving to the shamba did not increase the risk of having a fever episode. Children aged 1-4 years, who usually spend a considerable amount of time in the shamba with their caretakers, were more likely to have a fever than adults (odds ratio = 4.47, 95 confidence interval 2.35-8.51). Protection with mosquito nets in the fields was extremely good (98 antimalarials was uncommon. Despite the long distances to health services, 55.8 health facility, while home-management was less common (37 17.4-50.5). Conclusion: Living in the shamba does not appear to result in a higher fever-risk. Mosquito nets usage and treatment of fever in health facilities reflect awareness of malaria. Inability to obtain drugs in the fields may contribute to less irrational use of drugs but may pose an additional burden on poor farming households. A comprehensive approach is needed to improve access to treatment while at the same time assuring rational use of medicines and protecting fragile livelihoods

    Efficacy and Safety of Artemether in the Treatment of Chronic Fascioliasis in Egypt: Exploratory Phase-2 Trials

    Get PDF
    Fasciola hepatica and F. gigantica are two liver flukes that parasitize herbivorous large size mammals (e.g., sheep and cattle), as well as humans. A single drug is available to treat infections with Fasciola flukes, namely, triclabendazole. Recently, laboratory studies and clinical trials in sheep and humans suffering from acute fascioliasis have shown that artesunate and artemether (drugs that are widely used against malaria) also show activity against fascioliasis. Hence, we were motivated to assess the efficacy and safety of oral artemether in patients with chronic Fasciola infections. The study was carried out in Egypt and artemether administered according to two different malaria treatment regimens. Cure rates observed with 6×80 mg and 3×200 mg artemether were 35% and 6%, respectively. In addition, high efficacy was observed when triclabendazole, the current drug of choice against human fascioliasis, was administered to patients remaining Fasciola positive following artemether treatment. Concluding, monotherapy with artemether does not represent an alternative to triclabendazole against fascioliasis, but its role in combination chemotherapy regimen remains to be investigated

    Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs

    Get PDF
    Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia

    Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and abundance of <it>Anopheles </it>larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya.</p> <p>Methods</p> <p>Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent <it>Azolla </it>cover were taken for each habitat.</p> <p>Results</p> <p>Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total <it>Anopheles </it>immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower <it>Anopheles </it>larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage <it>Azolla </it>cover, distance to nearest homestead, depth and water turbidity were the best predictors for <it>Anopheles </it>mosquito larval abundance.</p> <p>Conclusion</p> <p>These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.</p

    A simple method for defining malaria seasonality

    Get PDF
    BACKGROUND: There is currently no standard way of defining malaria seasonality, resulting in a wide range of definitions reported in the literature. Malaria cases show seasonal peaks in most endemic settings, and the choice and timing for optimal malaria control may vary by seasonality. A simple approach is presented to describe the seasonality of malaria, to aid localized policymaking and targeting of interventions. METHODS: A series of systematic literature reviews were undertaken to identify studies reporting on monthly data for full calendar years on clinical malaria, hospital admission with malaria and entomological inoculation rates (EIR). Sites were defined as having 'marked seasonality' if 75% or more of all episodes occurred in six or less months of the year. A 'concentrated period of malaria' was defined as the six consecutive months with the highest cumulative proportion of cases. A sensitivity analysis was performed based on a variety of cut-offs. RESULTS: Monthly data for full calendar years on clinical malaria, all hospital admissions with malaria, and entomological inoculation rates were available for 13, 18, and 11 sites respectively. Most sites showed year-round transmission with seasonal peaks for both clinical malaria and hospital admissions with malaria, with a few sites fitting the definition of 'marked seasonality'. For these sites, consistent results were observed when more than one outcome or more than one calendar year was available from the same site. The use of monthly EIR data was found to be of limited value when looking at seasonal variations of malaria transmission, particularly at low and medium intensity levels. CONCLUSION: The proposed definition discriminated well between studies with 'marked seasonality' and those with less seasonality. However, a poor fit was observed in sites with two seasonal peaks. Further work is needed to explore the applicability of this definition on a wide-scale, using routine health information system data where possible, to aid appropriate targeting of interventions

    ISG15 Is Critical in the Control of Chikungunya Virus Infection Independent of UbE1L Mediated Conjugation

    Get PDF
    Chikungunya virus (CHIKV) is a re-emerging alphavirus that has caused significant disease in the Indian Ocean region since 2005. During this outbreak, in addition to fever, rash and arthritis, severe cases of CHIKV infection have been observed in infants. Challenging the notion that the innate immune response in infants is immature or defective, we demonstrate that both human infants and neonatal mice generate a robust type I interferon (IFN) response during CHIKV infection that contributes to, but is insufficient for, the complete control of infection. To characterize the mechanism by which type I IFNs control CHIKV infection, we evaluated the role of ISG15 and defined it as a central player in the host response, as neonatal mice lacking ISG15 were profoundly susceptible to CHIKV infection. Surprisingly, UbE1L−/− mice, which lack the ISG15 E1 enzyme and therefore are unable to form ISG15 conjugates, displayed no increase in lethality following CHIKV infection, thus pointing to a non-classical role for ISG15. No differences in viral loads were observed between wild-type (WT) and ISG15−/− mice, however, a dramatic increase in proinflammatory cytokines and chemokines was observed in ISG15−/− mice, suggesting that the innate immune response to CHIKV contributes to their lethality. This study provides new insight into the control of CHIKV infection, and establishes a new model for how ISG15 functions as an immunomodulatory molecule in the blunting of potentially pathologic levels of innate effector molecules during the host response to viral infection
    corecore