12 research outputs found

    Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis

    Get PDF
    Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma

    Paleogenetic and taphonomic analysis of human bones from Moa, Beirada, and ZĂ© Espinho Sambaquis, Rio de Janeiro, Brazil

    No full text
    The present paper discusses mtDNA and taphonomy of human remains from Moa, Beirada, and ZĂ© Espinho sambaquis of Saquarema, state of Rio de Janeiro, Brazil. New human bone dating by 14C-AMS for Moa archeological site (3810+50 BP - GX-31826-AMS) is included. Preservation of microscopic lamellae and DNA is not related to the macroscopic integrity of the bones. Results here suggest that the preservation of amplifiable DNA fragments may have relation to the preservation of the lamellar arrangement as indicated by optical microscopic examination (polarized light). In 13 human bone fragments from Moa, Beirada, and ZĂ© Espinho it was possible to sequence mtDNA from the 3 individuals of Moa, and from 1 of 4 individuals of Beirada, whose bones also show extensive areas with preserved lamellar structures. The 6 human bone fragments of ZĂ© Espinho and 3 of the 4 fragments of Beirada showed extensive destruction of cortical microstructure represented by cavities, intrusive minerals, and agglomerated microscopic bodies of fungi and bacteria; it was not possible to extract mtDNA from these samples. The results support the hypothesis that the preservation of the microscopic osteon organization is a good predictor for DNA preservation. It was also confirmed the C haplogroup antiquity in Brazil

    Single-chain VαVβ T-cell receptors function without mispairing with endogenous TCR chains

    No full text
    Transduction of exogenous T cell receptor (TCR) genes into patients’ activated peripheral blood T cells is a potent strategy to generate large numbers of specific T cells for adoptive therapy of cancer and viral diseases. However, the remarkable clinical promise of this powerful approach is still being overshadowed by a serious potential consequence: mispairing of the exogenous TCR chains with endogenous TCR chains. These “mixed” heterodimers can generate new specificities that result in graft-versus-host reactions. Engineering TCR constant regions of the exogenous chains with a cysteine promotes proper pairing and reduces the mispairing, but, as we show here, does not eliminate the formation of mixed heterodimers. By contrast, deletion of the constant regions, through use of a stabilized Vα/Vβ single-chain TCR (scTv), avoided mispairing completely. By linking a high-affinity scTv to intracellular signaling domains, such as Lck and CD28, the scTv was capable of activating functional T cell responses in the absence of either the CD3 subunits or the co-receptors, and circumvented mispairing with endogenous TCRs. Such transduced T cells can respond to the targeted antigen independent of CD3 subunits via the introduced scTv, without the transduced T cells acquiring any new undefined and potentially dangerous specificities

    The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus

    No full text
    corecore