12 research outputs found

    Nociceptin system as a target in sepsis?

    Full text link
    The nociceptin system comprises the nociceptin receptor (NOP) and the ligand nociceptin/orphanin FQ (N/OFQ) that binds to the receptor. The archetypal role of the system is in pain processing but the NOP receptor is also expressed on immune cells. Activation of the NOP receptor is known to modulate inflammatory responses, such as mast-cell degranulation, neutrophil rolling, vasodilation, increased vascular permeability, adhesion molecule regulation and leucocyte recruitment. As there is a loss of regulation of inflammatory responses during sepsis, the nociceptin system could be a target for therapies aimed at modulating sepsis. This review details the known effects of NOP activation on leucocytes and the vascular endothelium and discusses the most recent human and animal data on the role of the nociceptin system in sepsis

    The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model

    No full text
    International audienceHuman and mouse respiratory tracts show anatomical and physiological differences, which will benefit from alternative experimental models for studying many respiratory diseases. Pig has been recognized as a valuable biomedical model, in particular for lung transplantation or pathologies such as cystic fibrosis and influenza infection. However, there is a lack of knowledge about the porcine respiratory immune system. Here we segregated and studied six populations of pig lung dendritic cells (DCs)/macrophages (Mhs) as follows: conventional DCs (cDC) 1 and cDC2, inflammatory monocytederived DCs (moDCs), monocyte-derived Mhs, and interstitial and alveolar Mhs. The three DC subsets present migratory and naive T-cell stimulation capacities. As observed in human and mice, porcine cDC1 and cDC2 were able to induce T-helper (Th)1 and Th2 responses, respectively. Interestingly, porcine moDCs increased in the lung upon influenza infection, as observed in the mouse model. Pig cDC2 shared some characteristics observed in human but not in mice, such as the expression of FCeRIa and Langerin, and an intra-epithelial localization. This work, by unraveling the extended similarities of the porcine and human lung DC/Mh networks, highlights the relevance of pig, both as an exploratory model of DC/Mh functions and as a model for human inflammatory lung pathologies

    Neuropeptides in the Immune System: Mediators of Stress and Inflammation

    No full text
    corecore