1,408 research outputs found

    Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure

    Full text link
    The spin-orbit interaction affects the electronic structure of solids in various ways. Topological insulators are one example where the spin-orbit interaction leads the bulk bands to have a non-trivial topology, observable as gapless surface or edge states. Another example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. It is of particular importance to know how these two effects, i.e. the non-trivial topology of electronic states and Rashba spin splitting, interplay with each other. Here we show, through sophisticated first-principles calculations, that BiTeI, a giant bulk Rashba semiconductor, turns into a topological insulator under a reasonable pressure. This material is shown to exhibit several unique features such as, a highly pressure-tunable giant Rashba spin splitting, an unusual pressure-induced quantum phase transition, and more importantly the formation of strikingly different Dirac surface states at opposite sides of the material.Comment: 5 figures are include

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials

    Full text link
    Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal invariant topological insulators. Because of limitations imposed by nature, topologically non-trivial electronic order seems to be uncommon except in small-band-gap semiconductors with strong spin-orbit interactions. In this Article we show that artificial electromagnetic structures, known as metamaterials, provide an attractive platform for designing photonic analogues of topological insulators. We demonstrate that a judicious choice of the metamaterial parameters can create photonic phases that support a pair of helical edge states, and that these edge states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    Mutations in GPAA1, Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay, Epilepsy, Cerebellar Atrophy, and Osteopenia.

    Get PDF
    Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system

    iTRAQ-Coupled 2-D LC-MS/MS Analysis of Membrane Protein Profile in Escherichia coli Incubated with Apidaecin IB

    Get PDF
    Apidaecins are a series of proline-rich, 18- to 20-residue antimicrobial peptides produced by insects. They are predominantly active against the Gram-negative bacteria. Previous studies mainly focused on the identification of their internal macromolecular targets, few addressed on the action of apidaecins on the molecules, especially proteins, of bacterial cell membrane. In this study, iTRAQ-coupled 2-D LC-MS/MS technique was utilized to identify altered membrane proteins of Escherichia coli cells incubated with one isoform of apidaecins—apidaecin IB. Cell division protease ftsH, an essential regulator in maintenance of membrane lipid homeostasis, was found to be overproduced in cells incubated with apidaecin IB. Its over-expression intensified the degradation of cytoplasmic protein UDP-3-O-acyl-N- acetylglucosamine deacetylase, which catalyzes the first committed step in the biosynthesis of the lipid A moiety of LPS, and thus leaded to the further unbalanced biosynthesis of LPS and phospholipids. Our findings suggested a new antibacterial mechanism of apidaecins and perhaps, by extension, for other proline-rich antimicrobial peptides

    Periodontal disease in a patient with Prader-Willi syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Prader-Willi syndrome is a complex genetic disease caused by lack of expression of paternally inherited genes on chromosome 15q11-q13. The prevalence of Prader-Willi syndrome is estimated to be one in 10,000 to 25,000. However, descriptions of the oral and dental phenotype are rare.</p> <p>Case presentation</p> <p>We describe the clinical presentation and periodontal findings in a 20-year-old Japanese man with previously diagnosed Prader-Willi syndrome. Clinical and radiographic findings confirmed the diagnosis of periodontitis. The most striking oral findings were anterior open bite, and crowding and attrition of the lower first molars. Periodontal treatment consisted of tooth-brushing instruction and scaling. Home care involved recommended use of adjunctive chlorhexidine gel for tooth brushing twice a week and chlorhexidine mouthwash twice daily. Gingival swelling improved, but further treatment will be required and our patient's oral hygiene remains poor. The present treatment of tooth-brushing instruction and scaling every three weeks therefore only represents a temporary solution.</p> <p>Conclusions</p> <p>Rather than being a direct result of genetic defects, periodontal diseases in Prader-Willi syndrome may largely result from a loss of cuspid guidance leading to traumatic occlusion, which in turn leads to the development of periodontal diseases and dental plaque because of poor oral hygiene. These could be avoided by early interventions to improve occlusion and regular follow-up to monitor oral hygiene. This report emphasizes the importance of long-term follow-up of oral health care by dental practitioners, especially pediatric dentists, to prevent periodontal disease and dental caries in patients with Prader-Willi syndrome, who appear to have problems maintaining their own oral health.</p
    • …
    corecore